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DYNAMIC STRAY CURRENT ANALYSYS
CHAPTER 4

• INTRODUCTION
• This chapter is to review a means of detecting dynamic stray current from various 

sources

• There are many sources for dynamic stray current.
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DYNAMIC vs STATIC

• Static stray current
• A steady source of current from a foreign source

• The most common example is a rectifier from another pipeline or tank 
company

• Also could be from sources such as railroad signal batteries, or high 
voltage DC grounding

• Dynamic Stray Current
• The most common source would be DC rail systems

• Also could be chemical and smelter plants

• Telluric current is also a potential source, a result of solar activity

• AC stray current can also be an issue, but is not focused on in this 
chapter
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THE EARTH AS A CONDUCTOR

• Soil resistivity
• There is no such thing as uniform soil resistivity, unless you are in the 

middle of the ocean

• Can vary from 25 ohm.cm to 1000000 ohm.cm

• Resistivity is the reciprocal of conductivity.
• Essentially, the lower the resistivity of the soil, the more current can 

travel to the interfered structure (i.e.: pipeline)

• Regardless, the pipe resistivity is much lower than any soil or 
water (.000022 ohm.cm)

• This will allow the current to flow a long way on the pipeline with very 
little voltage gradient
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VOLTAGE 
GRADIENTS

• The cause of current flow is a 
potential difference between two 
points on the pipeline

• Each “line” in the gradient field 
illustrated can be considered a drop 
in voltage

• As the pipe traverses though several 
of these “lines”, this is called a 
potential difference

• The amount of current generated by 
this potential difference is inversely 
proportional to the resistivity of the 
earth. (I = V/R)
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VOLTAGE GRADIENTS (CONT.)

• Any pipe to soil variations should be investigated
• Especially if the voltage variation is predominantly in the positive 

direction

• It is generally accepted that if the pipe to soil reading does not 
drop below (become more positive) than -0.850V instant off, 
then a corrosive condition is not likely to exist.
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INITIAL DETECTION OF 
STRAY CURRENTS

• Normally the stray current will be 
noticeable because it is fluctuating 
rapidly while attempting to obtain a 
pipe to soil reading

• However this is not always the case.  
With Telluric currents, the voltage 
swing could take hours to complete a 
single cycle.

• Contact with technicians and 
engineers for other pipeline operators 
can assist in determining if there is a 
stray current issue in your area

• A good resource is the Corrosion 
committee in your area

• Research to determine if there are 
any DC rail transit systems, mines, or 
chemical plants that may use high 
current DC power sources.
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INITIAL DETECTION OF 
STRAY CURRENTS

• This graph shows a situation where 
the stray current source was not 
constant, or even cyclical
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MEASURING CURRENT 
MAGNITUDE AND 
DIRECTION ON THE 
PIPELINE

• A calibrated span on the pipeline can 
be used to measure current at a 
particular location on a pipeline

• Although only two wire shown, there 
is normally 4 wires, to allow for 
calibration of the span to accurately 
calculate the current

• Can use standard resistance charts 
to determine the resistance of the 
span

• Not as accurate, but will give a good 
indication

• Would need a sufficient amount of 
current spans, and they would need 
to be properly located to assist in 
determining the point of maximum 
exposure.
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TESTING FOR POINT OF MAXIMUM 
EXPOSURE

• With a single source of stray current, Beta curves can be used 
to determine the point of maximum exposure

• This is used to monitor the voltage change on the pipeline with 
reference to the voltage difference between the pipe and the 
negative return bus on the rail line. 
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TEST SET UP FOR 
DETERMINING POINT OF 
MAXIMUM EXPOSURE

• E(SC) is the voltage difference 
between the ground rail and the 
pipeline

• V(gsc) is the pipe to soil potential 
obtained at a single location on the 
pipeline

• Use of synchronized data loggers is 
critical for obtaining this data.

• The time stamp for the data must be 
identical.
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BETA CURVE OF A 
CURRENT PICKUP 
AREA

• The Beta curve is calculated at each 
point as follows

• ΔEsc – CHANGE IN VOLTAGE

• ΔVgsc – CHANGE IN PIPE TO SOIL 
POTENTIAL

•
∆𝑉𝑔𝑠𝑐

∆𝐸𝑠𝑐
= 𝛽

• A negative slope as shown to the 
right is indicative of a current pickup 
area.  

12



BETA CURVE OF A 
CURRENT 
DISCHARGE AREA

• A positive slope will indicate a 
location of potential current discharge

• The steeper the slope, the smaller 
the Beta number will be

• A vertical slope indicates no influence 
from the stray voltage.  

• This rarely happens, and if this is 
plotted, the equipment that is used 
should be verified

• The larger the Beta (Shallower the 
slope) the more potential for current 
discharge.

• Need to obtain curves at several 
locations
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LOCATING THE 
POINT OF MAXIMUM 
EXPOSURE ON 
PIPELINE

• The calculated beta curves can be 
plotted on a graph as shown

• Remember the positive Beta curve is 
a discharge location

• The point of maximum exposure can 
be determined by using the largest 
Beta

• In this example, it is at the test station 
closest to the substation
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MITIGATION(NOT ELIMINATION) OPTIONS

• Controlling the source
• The biggest culprit is the ground rails on DC transit systems.

• Maintaining electrical isolation from the earth is critical to minimizing 
stray currents

• Use of insulated fasteners to the tie down locations.

• In locations of welding (such as factories), the ground and the 
electrode should be as close together as possible
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DESIGNING A DRAINAGE BOND

• A bond can be used to drain the current back to the substation

• This should be avoided on the newer transit systems
• Modern rail systems are normally well grounded

• The bond will significantly lower the circuit resistance between the rail 
system and the pipeline

• This will cause a large increase in interference current that would 
normally not be present.

• There is a need to calculate the resistance of the bond, to 
ensure that not too much current is drained
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BONDS AND REVERSE CURRENT 
SWITCHES

Selenium stack to mitigate large 
currents

Simple diode to mitigate lower 
current levels
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LOCATION OF BOND

• As stated previously, the bond should be located at the point of 
maximum exposure

• Testing needs to be completed to properly size the bond, and 
ensure it is sufficient to mitigate the interference

• The proper equipment will be required
• Data loggers

• Cables large enough to handle the current expected.
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METHODS TO SIZE A BOND

• Trial and Error method
• Involves using temporary bonds and obtaining readings

• As with any testing, the testing needs to be coordinated with the 
railway

• Need to use cables that can handle very large amounts of current
• In excess of 200A

• May involve several attempts.
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METHODS TO SIZE A BOND

• Mathematical method
• Still involves testing with the railway to obtain some of the variables 

involved in the calculations

• Consider the total voltage Vg
• 𝑉𝑔 = ∆𝑉𝑔𝑜 + ∆𝑉𝑔𝑐𝑝 + ∆𝑉𝑔𝑠𝑐 + ∆𝑉𝑔𝑏

• Vg – Total pipe to soil

• ΔVgo- Native pipe to soil of the pipeline (No CP applied)

• ΔVgcp – Added voltage from applied CP

• ΔVgsc – Voltage change created by stray current sources

• ΔVgb – Voltage change created by the bond being installed
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MATHMATICAL 
METHOD

• ΔVgsc can be determined using the 
beta curve

• ∆𝑉𝑔𝑠𝑐 = 𝛽 ∗ ∆𝐸𝑠𝑐

• Assume ΔVgcp = 0

• Then substitute for ΔVgsc

• 𝑉𝑔 = ∆𝑉𝑔𝑜 + 𝛽 ∗ ∆𝐸𝑠𝑐 + ∆𝑉𝑔𝑏

• For current to be mitigated

• ∆𝑉𝑔𝑏 = 𝛽 ∗ ∆𝐸𝑠𝑐

• And ∆𝑉𝑔 = ∆𝑉𝑔𝑜
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TESTING TO 
PERFORM FOR 
CALCULATIONS

• The diagram shows the test set up for 
getting the results needed for this 
calculation below.

• This test is to determine the change 
in the pipe to soil potential per 
ampere of current

• ∆𝑉𝑔 = 𝑉𝑔 𝑜𝑛 − 𝑉𝑔 𝑜𝑓𝑓

• ∆𝐼1 = 𝐼1 𝑜𝑛 − 𝐼1 𝑜𝑓𝑓

• Volts per amp = Τ∆𝑉𝑔 ∆𝐼1
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DERIVE THE FORMULA TO 
CALCULATE THE BOND 
CURRENT

• The change in voltage as a result of 
the bond can be calculated by

• ∆𝑉𝑔𝑏 = 𝐼𝑏 ∗ (
∆𝑉𝑔

𝐼1
)

• Substitute for ΔVgb

• 𝛽 ∗ 𝐸𝑠𝑐 = 𝐼𝑏 ∗ (
∆𝑉𝑔

𝐼1
)

• Solve for Ib

• 𝐼𝑏 = ൗ𝛽 ∗ 𝐸𝑠𝑐 (
∆𝑉𝑔

𝐼1
)
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CALCULATE THE RESISTANCE OF THE BOND

• The resistance of the circuit is a combination of the internal 
resistance (Rint) and the bond resistance (Rb)

• Use ohms law – V=IR to solve for the resistance
• Substitute V with Esc (Stray voltage between rail and pipeline)

• Substitute I with Ib (Bond current)

• Substitute R with Rint + Rb (Combined resistance)
• 𝐸𝑠𝑐 = 𝐼𝑏 ∗ 𝑅𝑖𝑛𝑡 + 𝑅𝑏

• 𝑅𝑏 =
𝐸𝑠𝑐

𝐼𝑏
-Rint
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CALCULATE THE RESISTANCE OF THE BOND

• Since Ib is still unknown, it needs to be substituted from the 
formula derived previously

• 𝐼𝑏 = ൗ𝛽 ∗ 𝐸𝑠𝑐 (
∆𝑉𝑔

𝐼1
)

• 𝑅𝑏 = 𝐸𝑠𝑐 ∗ ൗ
∆𝑉𝑔

𝐼1
𝛽 ∗ 𝐸𝑠𝑐 − 𝑅𝑖𝑛𝑡

• Esc cancels out and the formula simplifies to

• 𝑅𝑏 =
Τ∆𝑉𝑔 𝐼1

𝛽
− Rint
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CALCULATING 
INTERNAL 
RESISTANCE Rint

• The circuit shown is interrupted 
several times, and the data tabulated 
to get an average internal resistance

• The data obtained is as follows

• ∆𝐸1 = 𝐸1 𝑜𝑛 − 𝐸1 𝑜𝑓𝑓

• ∆𝐼1 = 𝐼1 𝑜𝑛 − 𝐼1 𝑜𝑓𝑓

• 𝑅𝑖𝑛𝑡 = Τ∆𝐸1 ∆𝐼1
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MEASUREMENTS TAKEN TO 
OBTAIN INTERNAL RESISTANCE
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MEASUREMENTS TAKEN TO OBTAIN THE POTENTIAL 
CHANGE PER AMPERE
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USING THE DATA

• To calculate the required bond resistance

• 𝑅𝑏 =
Τ∆𝑉𝑔 𝐼1

𝛽
− Rint

• ൗ∆𝑉𝑔
𝐼1=.00169 (From table 4-2)

• Β = .017 (Calculated at point of maximum exposure)

• Rint = .070 (From table 4-1)

• Rb = (.00169/.017)-.070 = 0.0294ohm

• The resistance in this case is low enough, no resistor would be 
added to the circuit
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DETERMINING EXPECTED BOND CURRENT

• Need to determine the maximum voltage difference (Esc) that 
will be seen by the bond

• Use the maximum voltage recorded on a data logger over a 24 hour 
period

• For this example, use 12V

• Using ohm’s law V=IR
• 𝐸𝑠𝑐 = 𝐼𝑏 ∗ 𝑅𝑖𝑛𝑡 + 𝑅𝑏

• 𝐼𝑏 = Τ𝐸𝑠𝑐 (𝑅𝑖𝑛𝑡 + 𝑅𝑏)

• 𝐼𝑏 =
12

.070+.0294

• 𝐼𝑏 = 120.7𝐴
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SKETCH OF TYPICAL BOND INSTALLATION
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GALVANIC ANODES

• Galvanic anodes can be used to mitigate very small amounts of current
• Their driving voltage is low, and can not produce much current

• The soil resistivity is also high, also limiting the amount of current it is produced

• The anodes also have a high consumption rate, and have a short life span
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IMPRESSED CURRENT

• An impressed current system (rectifier) can be used to generate larger 
amounts of current, that will offset the stray current from the interfering 
source

• The rectifiers can also be potential controlled to allow the current to 
fluctuate to offset the stray voltage

• These are usually designed by trial and error.
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AC CORROSION

• AC current density that is greater than 20A/m2 needs to be 
remediated

• Most common issue is induced AC from a power line

• AC rail lines can also produce sufficient current to be of concern
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INDUCED AC

• Step potential becomes a hazard

• Any AC pipe to soil voltages greater than 15V need to be 
addressed

• NACE SPO 177 provides a standard to follow when mitigating 
AC
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