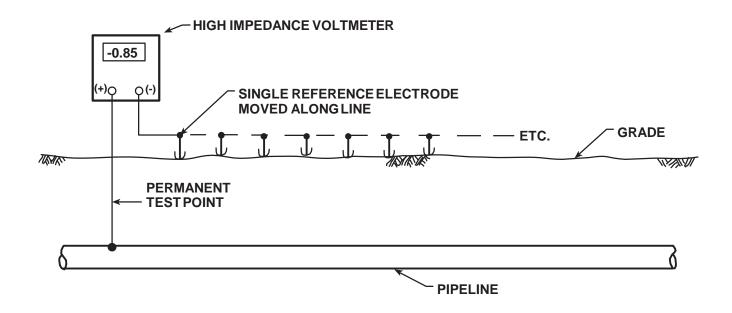
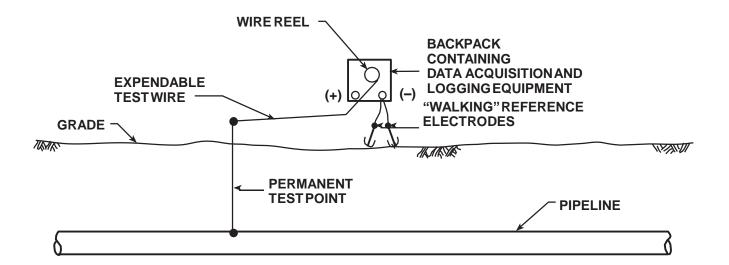
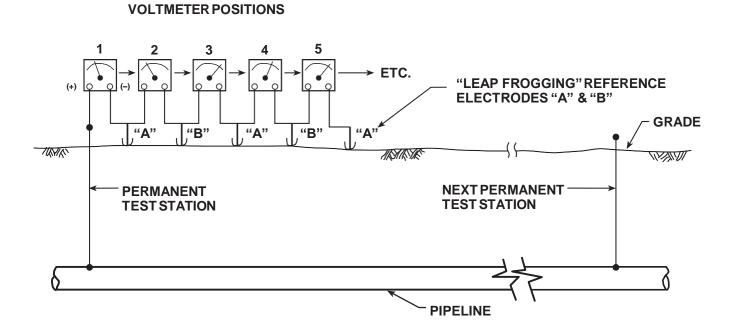

Advanced Chapter 1 Pipe-to-Soil Potential Surveys and Analysis



Appalachian Underground Corrosion Short Course

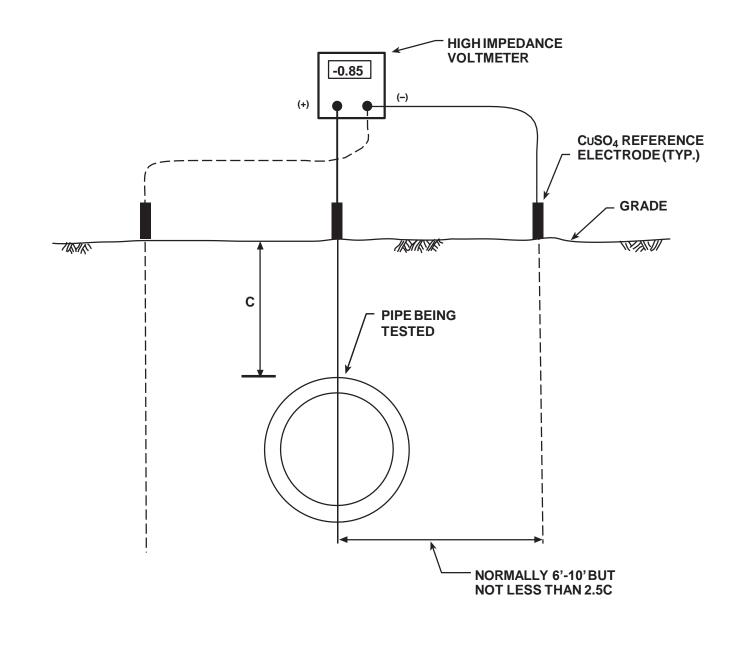

PIPE-TO-SOIL POTENTIAL MEASUREMENT


SINGLE ELECTRODE POTENTIAL SURVEY

TYPICAL COMPUTERIZED POTENTIAL SURVEY

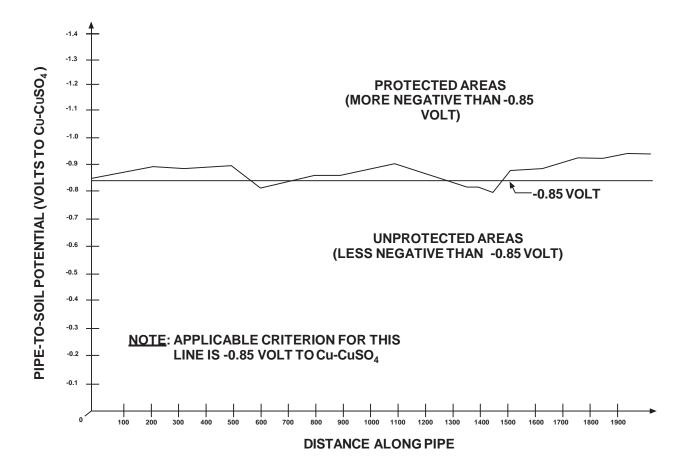
TWO ELECTRODE POTENTIAL SURVEY

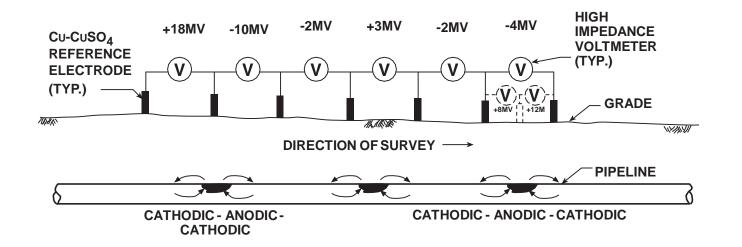
TABLE 1-1


Typical Data Record For Two Electrode Potential Survey Conducted on a Cathodically Protected Pipeline

Α	В	С	D	Comments
1		-	-0.860(1)	
2	0.035	+	-0.895	
3	0.021	+	-0.916	
4	0.065	-	-0.851	
5	0.092	-	-0.759	Unprotected Area
6	0.045	+	-0.804	Unprotected Area
7	0.063	+	-0.867	
8	0.011	+	-0.878	
9	0.020	-	-0.858	
10	0.032	+	-0.890	

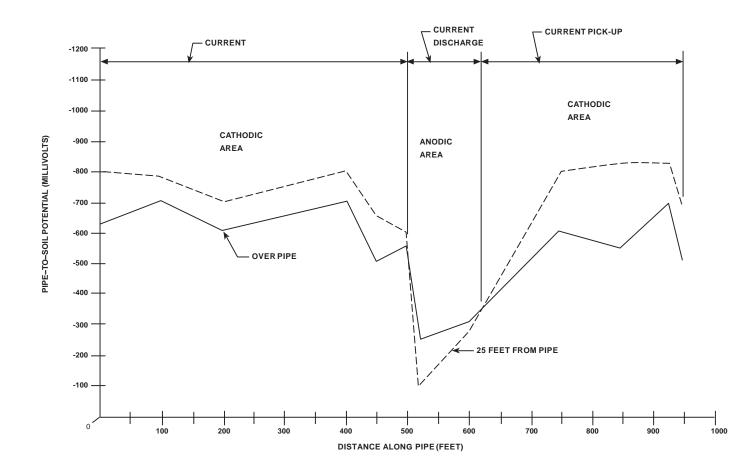
Where: A = position or pipeline section


- B = potential drop from electrode at last position (volts)
- C = polarity of forward electrode
- D = pipe to CSE (volts)
- Note: (1) Initial value measured via direct pipeline contact at Position 1

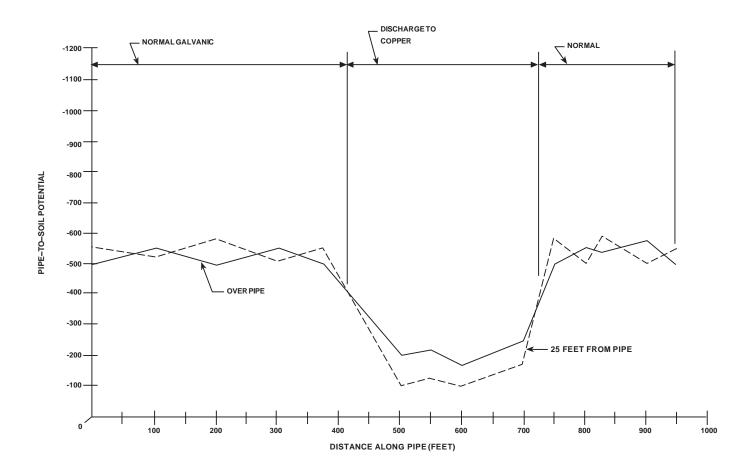

TYPICAL TEST SET UP FOR SIDE DRAIN MEASUREMENTS


TYPICAL POTENTIAL PLOT OF A CATHODICALLY PROTECTED PIPELINE

SCHEMATIC SURFACE POTENTIAL SURVEY



POTENTIAL PROFILE SHOWING GALVANIC CORROSION ACTIVITY


FIGURE 1-8

POTENTIAL PROFILE OF PIPE EFFECTED BY STRAY CURRENT INTERFERENCE

POTENTIAL PROFILE SHOWING BIMETALLIC EFFECT

FIGURE 1-10

TABLE 1-2

Potential Measurements

Test Station Location No.	Description of Location	Pipe-to-Soil Potential (mV to CSE)
21	Crestdale Regulator Station	-703
22	North side of Blue River on Rt. 95	-700
24	South side of Blue River	-735
26	Linden Metering Station	-542
26	Valve box approximately 7.8 miles South of Blue River	-730
28	Creek, 10.2 miles south of Blue River	-674
30	Atlantic Regulator Station	-563
31	Glendale Metering Station	-780
32	Crossing of railroad near Glendale	-506
33	Forest Park Regulator No. 1	-480
35	Forest Park Regulator No. 2	-537

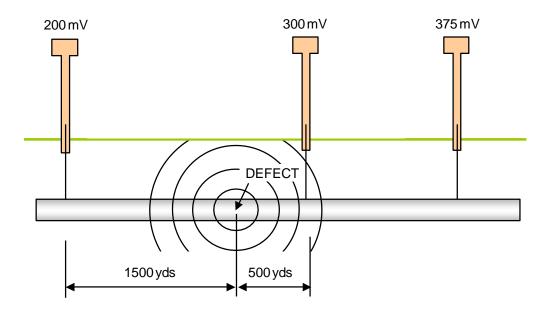
Advanced Chapter 2 Evaluation of Underground Coatings Using Aboveground Techniques

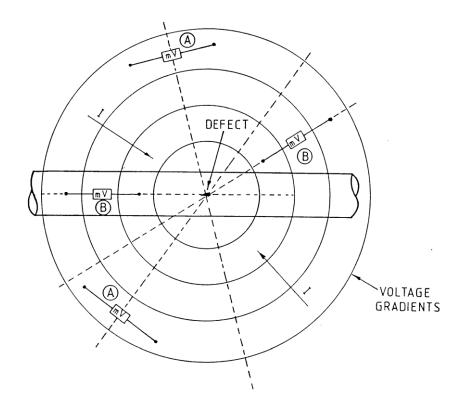
Appalachian Underground Corrosion Short Course

PIPELINE LOCATING CREW CLEARING PATH AND MARKING PIPELINE CENTERLINE

PIPELINE LOCATION STATIONING FLAGS NUMBERED FOR PRECISE DATA ALIGNMENT

ANALOG DCVG METER


DCVG SURVEYOR MEASURING VOLTAGE GRADIENT ABOVE PIPELINE


DCVG SURVEY COMPLETED ON WET ASPHALT IN MAJOR CITY

DCVG SIGNAL STRENGTH

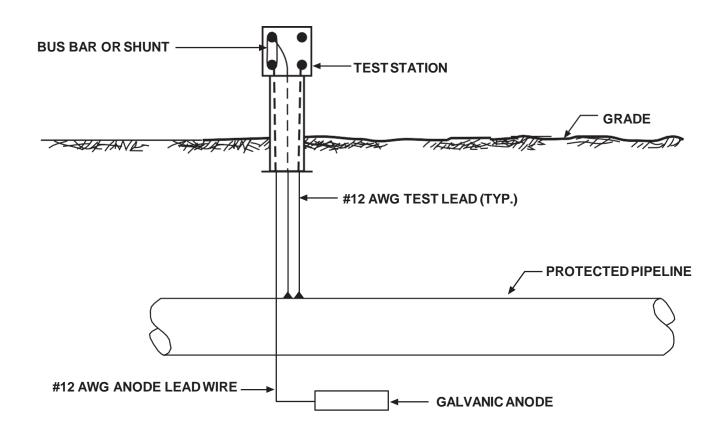
DCVG VOLTAGE GRADIENTS

ACVG SURVEY ABOVE PIPELINE LOCATING COATING HOLIDAYS

AC CURRENT ATTENUATION RECEIVER FACE

CLOSE-INTERVAL SURVEY TECHNICIAN WITH DATALOGGER, REFERENCE ELECTRODE, AND WIRE DISPENSERS

AC CURRENT ATTENUATION TRANSMITTER


TECHNICIAN MEASURING AC CURRENT ATTENUATION WITH RECEIVER

Advanced Chapter 3 Materials for Cathodic Protection

Appalachian Underground Corrosion Short Course

TYPICAL GALVANIC ANODE INSTALLATION

FIGURE 3-1

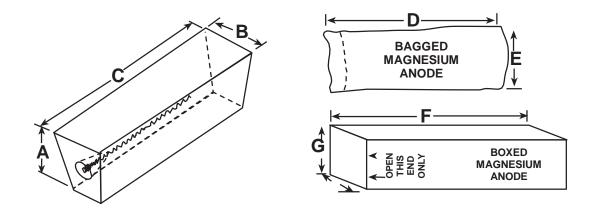


TABLE 3-1Capabilities and Consumption Rates of Galvanic Anodes

Туре	Potential* (volts to CSE)	Current Capacity (A-hrs/lb)	Consumption Rate (Ib/A-yr)
Magnesium			
H-1C AZ-63D Alloy	-1.4 to -1.5	250 to 470	19 to 36
High Potential Alloy	-1.7 to -1.8	450 to 540	16 to 19
Zinc			
ASTM B418-01			
Type I (saltwater)	-1.1	354	24.8
Type II (soil)	-1.1	335	26.2
Aluminum			
Mercury Alloys	-1.10	1250 to 1290	6.8 to 7.0
Indium Alloys	-1.15	1040 to 1180	7.4 to 8.4

* Copper/Copper Sulfate Reference Electrode - Open circuit practical values as shown

BARE AND PACKAGED MAGNESIUM ANODES

FIGURE 3-2

TABLE 3-2Magnesium Anode Dimensions and Weights

	Nominal Dimensions (Inches) - See Figure 3-2							
Alloy	А	В	С	D	E	F	G	Packaged Weight (lbs)
1 AZ63	3.2	Rd	2	6	6	-	-	3.6
3 H.P./AZ63	3	3	6	8	6	-	-	9
5 H.P./AZ63	3	3	10	12	5	-	-	12
6 H.P./AZ63	3	3	10	-	-	12.5	5	14
9 H.P./AZ63	3	3	13.5	17	6	-	-	27
12 AZ63	4	4	12	18	7.5	-	-	32
17 H.P.	3.5	3.5	25.5	30	6	-	-	42
17 AZ63	3.5	3.5	28	-	-	32	5.5	45
20 H.P.	2	2	60	-	-	71	4.5	65
32	5.5	5.5	21	25	8	-	-	72
32	5.5	5.5	21	-	-	24	7.5	70
40 H.P.	3.5	3.5	60	64	6	-	-	105
48 H.P.	5.5	5.5	32	36	8	-	-	106
50 AZ63	7	7	15	24	10	-	-	110
60 H.P.	4	4	60	64	5.75	-	-	130

Magnesium Extruded Ribbon and Rods

Size (Inches)	Weight (lb/ft)	Core (Inches)
dx ¾	0.24	0.125
0.750	0.36	0.125
0.840	0.45	0.125
1.050	0.68	0.125
1.315	1.06	0.125
1.561	1.50	0.125
2.024	2.50	0.125

* Data compiled from literature provided by various vendors and may vary slightly.

Element	AZ63B (H1A)	AZ63C (H1B)	AZ63D (H1C)	M1C (High Potential)
Aluminum (Al)	5.3 - 6.7%	5.3 - 6.7%	5.0 - 7.0%	< 0.01%
Zinc (Zn)	2.5 - 3.5%	2.5 - 3.5%	2.0 - 4.0%	-
Manganese	0.15 - 0.7%	0.15 - 0.7%	0.15 - 0.7%	0.5 - 1.3%
Silicon (Si)	< 0.10%	< 0.30%	< 0.30%	< 0.05%
Copper (Cu)	< 0.02%	< 0.05%	< 0.10%	< 0.02%
Nickel (Ni)	< 0.002%	< 0.003%	< 0.003%	< 0.001%
Iron (Fe)	< 0.003%	< 0.003%	< 0.003%	< 0.03%
Others (each)	-	-	-	< 0.05%
Others (total)	< 0.30%	< 0.30%	< 0.30%	< 0.30%
Magnesium	Balance	Balance	Balance	Balance

TABLE 3-3 Composition of Magnesium Alloy

Performance Characteristics*

	AZ63B (H1A)	AZ63C (H1B)	AZ63D (H1C)	M1C (HP)
Potential (Volts to CSE)	-1.60	-1.55	>-1.40	-1.75
Theoretical Current Capacity (A-hrs/lb)	1000	1000	1000	1000
Actual Current Capacity (A-hrs/lb)	450 - 580	300 - 470	250 - 470	400 - 540
Current Efficiency (%)	45 - 58	30 - 47	25 - 47	40 - 54
Actual Consumption Rate (Ib/A-yr)	18 - 15	33 - 19	35 - 19	19 - 16

* Using ASTM Standard G97-97 "Standard Test Method for Laboratory Evaluation of Magnesium Sacrificial Anode Test Specimens for Underground Applications".

Weight (lbs)	Height	Width	Length	Core (dia.")
Bare Zinc Anodes				
5	1.4	1.4	9	0.250
12	1.4	1.4	24	0.250
18	1.4	1.4	36	0.250
30	1.4	1.4	60	0.250
30-A	2.0	2.0	30	0.250
45	2.0	2.0	45	0.250
60	2.0	2.0	60	0.250
Zinc Ribbons				
2.4	1.0	1.250		0.185
1.2	0.625	0.875		0.135
0.6	0.500	0.563		0.130
0.25	0.344	0.469		0.115

TABLE 3-4 Zinc Anode Dimensions and Weights

TABLE 3-5 Zinc Alloy Compositions

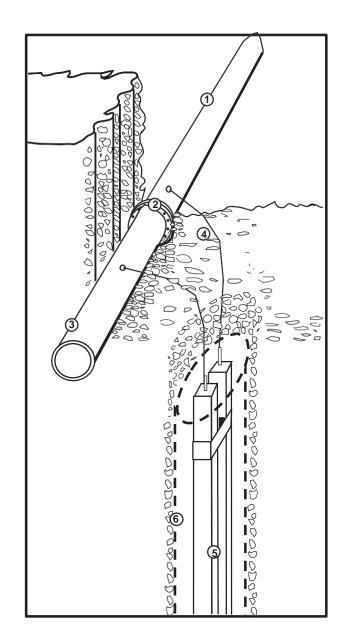

Element	ASTM B418-01 Type I (sea water)	ASTM B418-01 Type II (soil)
Aluminum	0.1 - 0.5%	< 0.005%
Cadmium	0.025 - 0.07%	< 0.003%
Iron	< 0.005%	< 0.0014%
Lead	< 0.006%	< 0.003%
Copper	< 0.005%	< 0.002%
Others	_	0.1%
Zinc	Balance	Balance

TABLE 3-6 Aluminum Alloy Composition and Performance

Element	Mercury Family Al/Hg/Zn	Indium Family Al/In/Zn
Zinc (Zn)	0.35 - 0.60%	2.8 - 6.5%
Silicon (Si)	0.14 - 0.21%	0.08 - 0.2%
Mercury (Hg)	0.035 - 0.060%	
Indium (In)		0.01 - 0.02%
Copper (Cu)	0.004% max	0.006% max
Iron (Fe)	0.10% max	0.12% max
Aluminum (Al)	Balance	Balance
Consumption Rate (Ib/A-y)	6.8 - 7.0	7.4 - 8.4
Current Capacity (A-hrs/lb)	1250 - 1290	1040 - 1180
Potential to Ag/AgCl	-1.05	-1.10
to Cu/CuSO₄	-1.10	-1.15

AUCSC

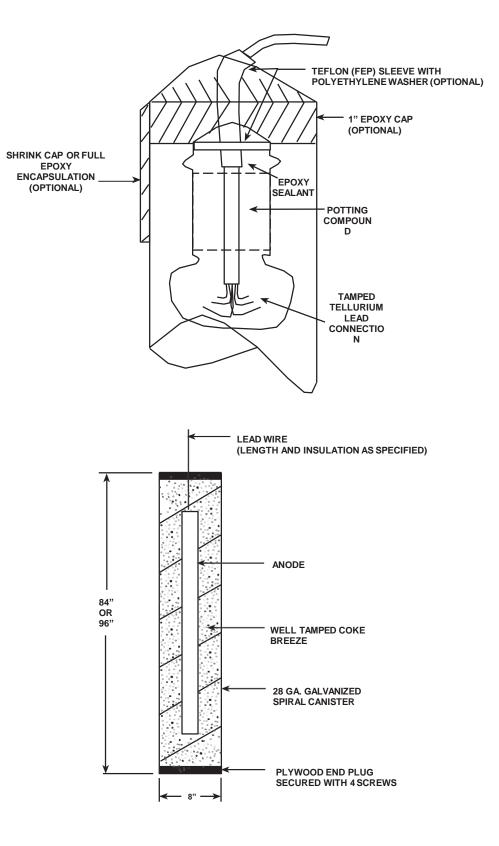
Appalachian Underground Corrosion Short Course

TWO UNIT ZINC GROUNDING CELLS

FIGURE 3-3

TYPICAL IMPRESSED CURRENT CATHODIC PROTECTION SYSTEM

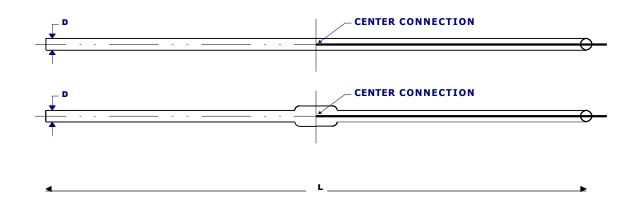
FIGURE 3-4


TABLE 3-7 Cast Iron Composition ASTM A518 Grade 3

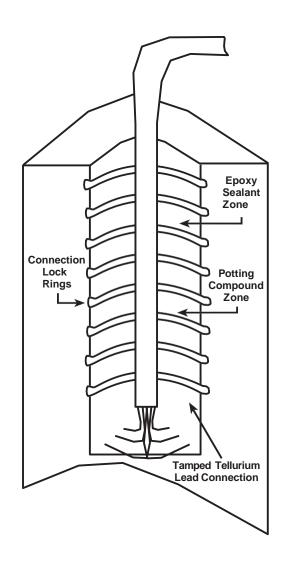
ELEMENT	COMPOSITION
Silicon	14.2 - 14.75%
Carbon	0.70 - 1.10%
Manganese	1.50% max
Molybdenum	0.20%
Chromium	3.25 - 5.00%
Copper	0.50% max
Iron	Balance

TABLE 3-8 Typical Cast Iron Rod Anode Dimensions

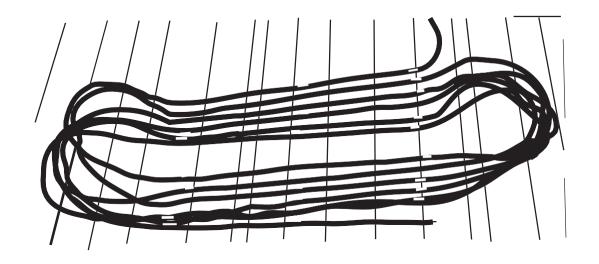
NOMINAL WEIGHT Ibs (kgs)	NOMINAL DIAMETER in (mm)	NOMINAL LENGTH in (mm)	NOMINAL AREA ft² (m²)
1.0 (.5)	1.1 (28)	9 (230)	.22 (.02)
5.0 (2.3)	2.0 (51)	9 (230)	.39 (.04)
9.0 (4.1)	2.5 (64)	9 (230)	.50 (.05)
26 (12)	1.5 (38)	60 (1520)	2.0 (.19)
43 (20)	2.0 (51)	60 (1520)	2.6 (.24)
44 (20)	2.0 (51)	60 (1520)	2.6 (.24)
60 (27)	2.0 (51)	60 (1520)	2.7 (.25)
110 (50)	4.0 (102)	60 (1520)	4.0 (.37)
220 (100)	4.5 (114)	60 (1520)	5.5 (.51)

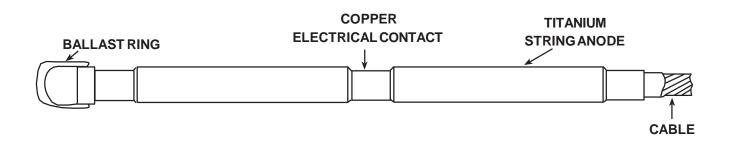


TYPICAL CAST IRON ANODE LEAD WIRE CONNECTION AND PACKAGING

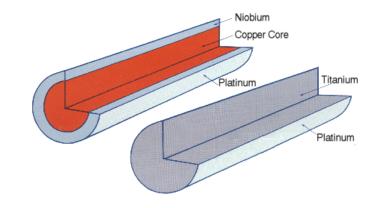


NOMINAL WEIGHT Ibs (kgs)	NOMINAL DIAMETER in (mm)	NOMINAL LENGTH in (mm)	NOMINAL AREA ft² (m²)
31 (14)	2.6 (66)	41 (1067)	2.4 (.22)
50 (23)	2.6 (66)	60 (1520)	3.5 (.33)
46-50 (21-23)	2.2 (56)	84 (2130)	4.2 (.39)
63-70 (29-32)	2.6 (66)	84 (2130)	4.9 (.46)
85-95 (39-43)	3.8 (97)	84 (2130)	7.0 (.65)
110-122 (50-55)	4.8 (122)	84 (2130)	8.8 (.82)
175-177 (79-80)	4.8 (122)	84 (2130)	8.8 (.82)
230 (104)	4.8 (122)	84 (2130)	8.8 (.82)
260 (118)	6.7 (170)	76 (1981)	11.4 (1.06)
270 (122)	6.7 (170)	84 (2130)	12.3 (1.14)


TYPICAL TUBULAR ANODE DIMENSIONS



TYPICAL GRAPHITE ANODE LEAD WIRE CONNECTION

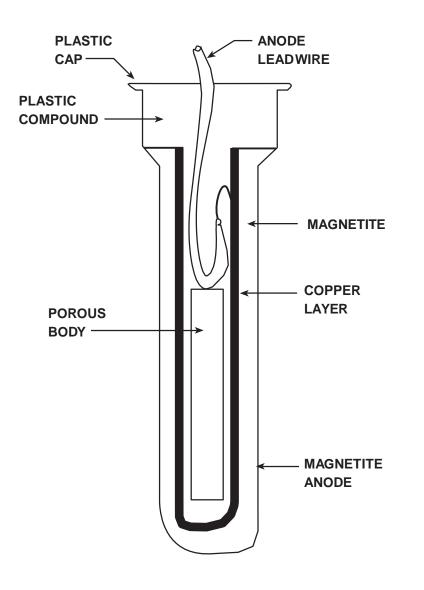


MIXED METAL ANODE

20% Niobium				
Diameter Inches	Nb Thickness Inches	Resistance microhm/ft	Pt Thickness μ-in (2X)*	
.750	.038	22	300 (600)	
.500	.025	50	200 (400)	
.375	.019	89	150 (300)	
.250	.013	201	100 (200)	
.188	.009	356	75 (150)	
.125	.006	806	50 (100)	

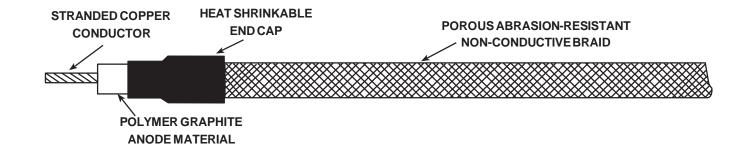
40% Niobium

Diameter Inches	Nb Thickness Inches	Resistance microhm/ft	Pt Thickness μ-in (2X)*
.375	.038	113	150 (300)
.250	.025	256	100 (200)
.188	.019	453	75 (150)
.125	.013	1025	50 (100)
.093	.010	1822	38 (75)
.063	.007	4102	25 (50)
.031	.0035	16,408	12.5(25)


100% Titanium		
Ti Thickness	Resistance	

Diameter Inches	Ti Thickness Inches	Resistance microhm/ft	Pt Thickness µ-in
.750	Solid	468	300
.500	Solid	1054	200
.375	Solid	1874	150
.250	Solid	4215	100
.188	Solid	7454	75
.125	Solid	16,862	50

* Double Platinum Thickness


PLATINUM ANODES

TYPICAL MAGNETITE ANODE

POLYMER ANODE

TABLE 3-9 Coke Breeze Composition

Туре	Bulk Density (lb/cu ft)	Porosity (%)	Carbon (lb/cu ft)
Metallurgical	45	48.0	32.51
Petroleum, calcined			
Delayed	48	59.5	47.76
Fluid	54	56.7	49.93
	70	44.0	64.73
	74	40.8	68.53

TABLE 3-10 Wire And Cable Insulation Designations

Designation	Insulation	Thick (in)	Cable Size	Specification
HMWPE	High Molecular Weight Polyethylene	.110 .125	No 8 - No 2 No 1 - 4/0	D-1248, Type 1 Class C, Cat. 5
τw	Polyvinyl Chloride (PVC)	.030 .034 .060	No 14 - No 10 No 8 No 6-No 2	U.L. Standard 83 (60º C wet/dry)
THW	Polyvinyl Chloride (PVC)	.045 .060	No 14 - No 10 No 8 - No 2	U.L. Standard 83 (75º C wet/dry)
THHN	PVC/Nylon Jacket (.0004" Nylon)	.015 .020	No 14 - No 12 No 10	U.L. Standard 83 (90º C dry)
THWN	PVC/Nylon Jacket (.004" Nylon)	.015 .020	No 14 - No 12 No 10	U.L. Standard 83 (75º C wet)
PVF/HMWPE	Polyvinylidene (.020") HMWPE jacket (.065")	.085	No 8 - No 2	Kynar™ ASTM D-257
ECTFE/HMWPE	Ethylene Chlorotriflora-ethylene (.020") HMWPE jacket (.065")	.085	No 8 - No 2	Halar™

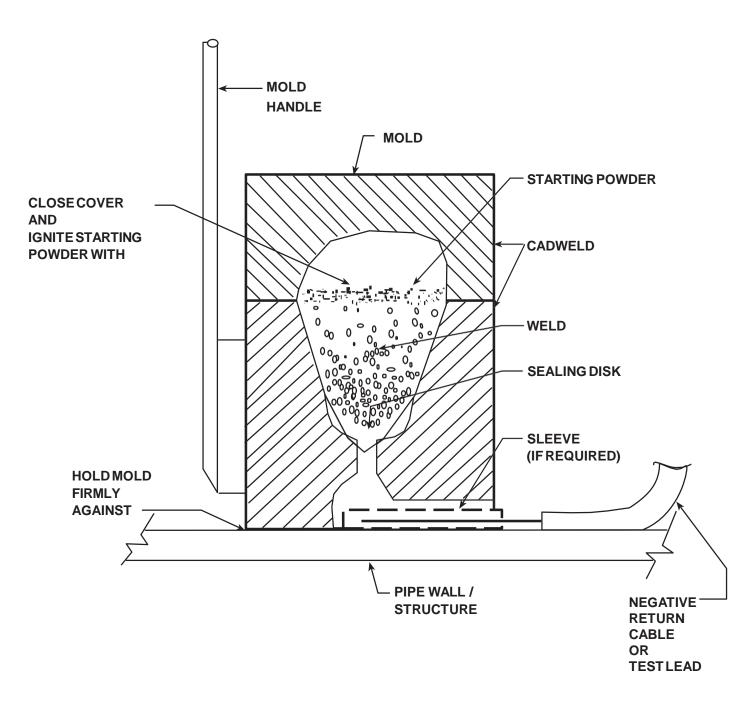
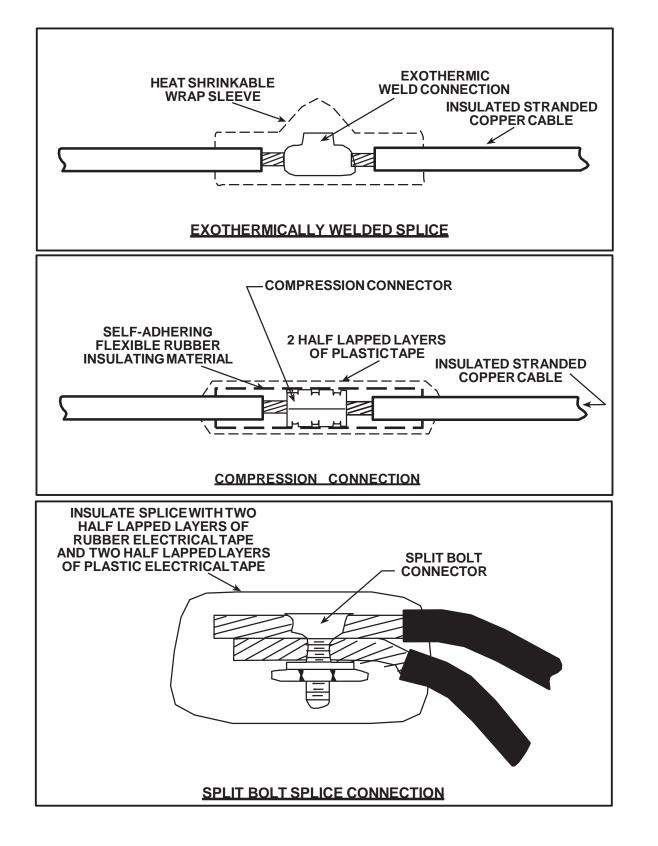


TABLE 3-11 Conductor Ampacities And Resistances NACE Corrosion Engineer's Reference Book

Size AWG	Ampacity* (Copper)	Resistance (Ohms/1000 ft @ 25º C)
No. 16	6	4.18
No. 14	15	2.62
No. 12	20	1.65
No. 10	30	1.04
No. 8	50	0.652
No. 6	65	0.411
No. 4	85	0.258
No.2	115	0.162
No. 1	130	0.129
No. 1/0	150	0.102
No. 2/0	175	0.0811
No. 3/0	200	0.0642
No. 4/0	230	0.0509
250 MCM	255	0.0423
300 MCM	285	0.0353
350 MCM	310	0.0302
400 MCM	335	0.0264
500 MCM	380	0.0212

* Ampacity based on THW and HMWPE insulation


TYPICAL EXOTHERMIC WELD PROCESS

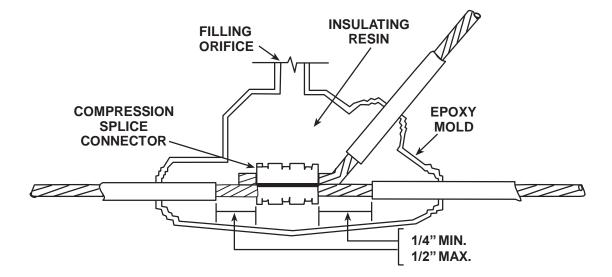
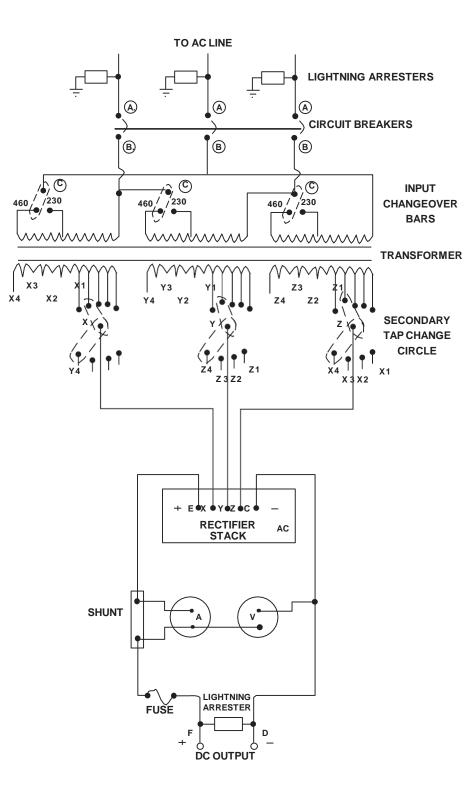
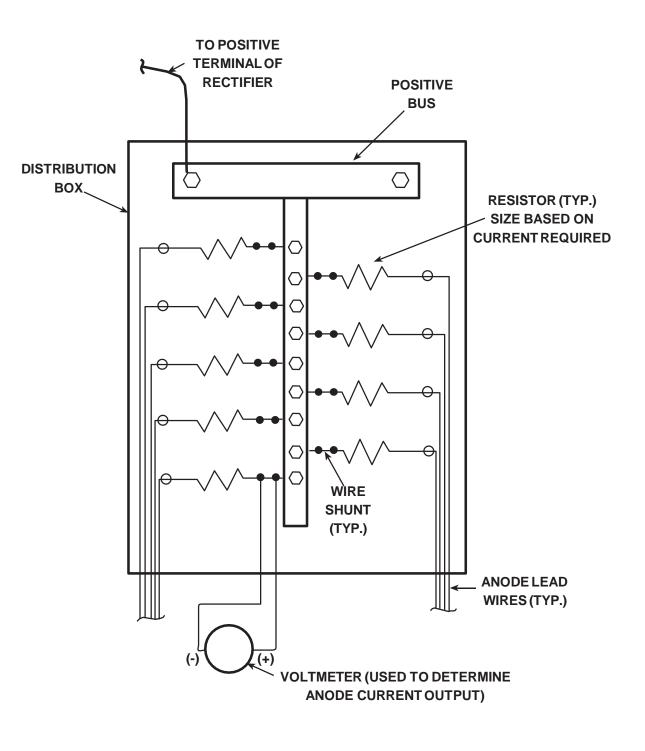
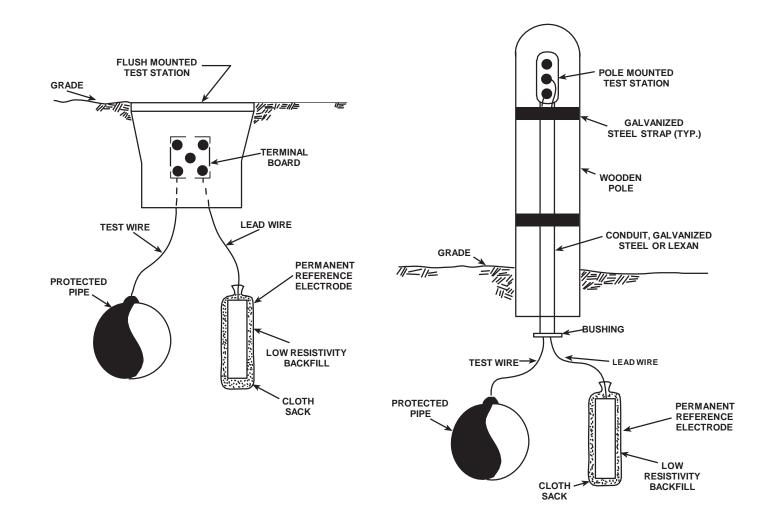
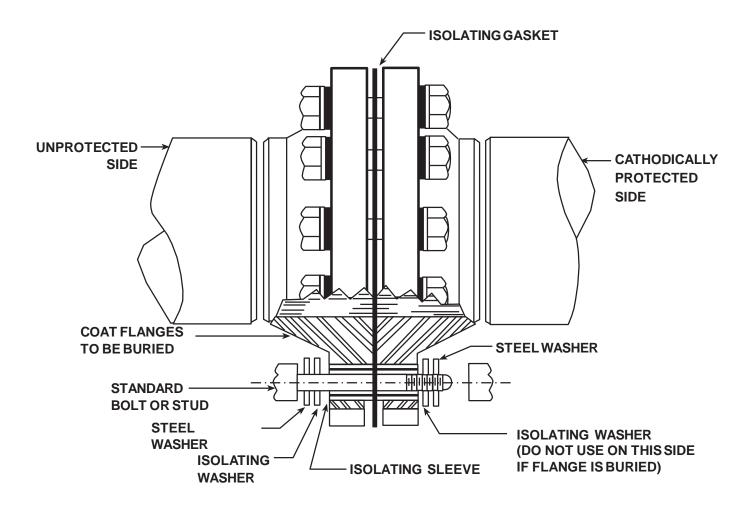


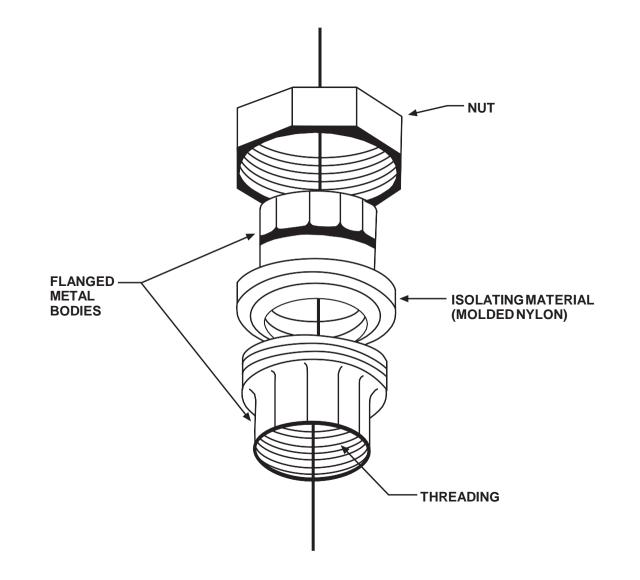
FIGURE 3-13

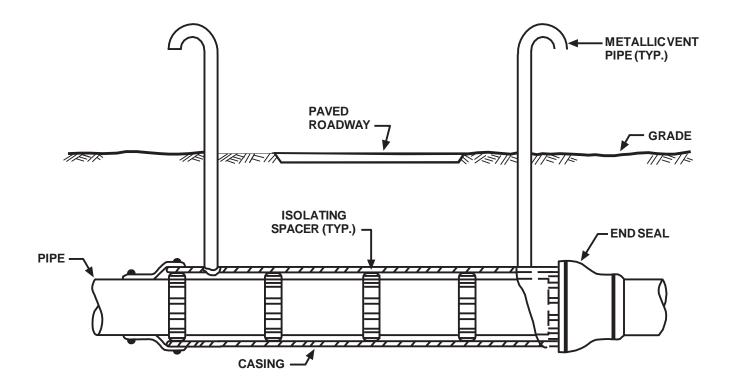

CABLE SPLICE CONNECTIONS


EPOXY ENCAPSULATED SPLICE

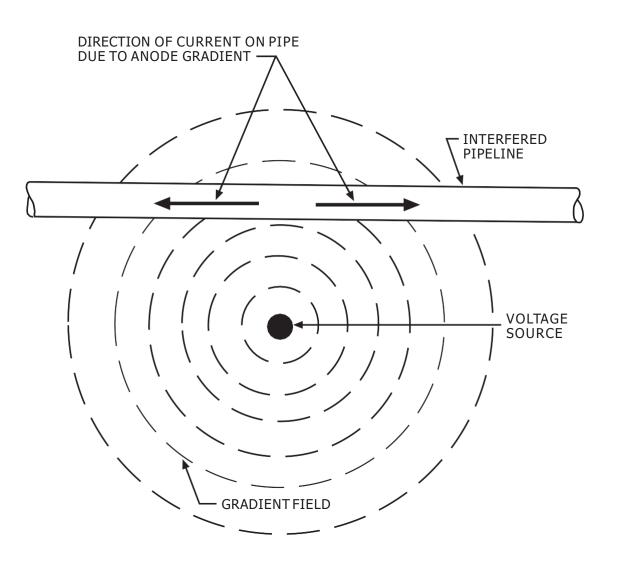

TYPICAL RECTIFIER CIRCUIT


TYPICAL JUNCTION BOX WITH SHUNTS

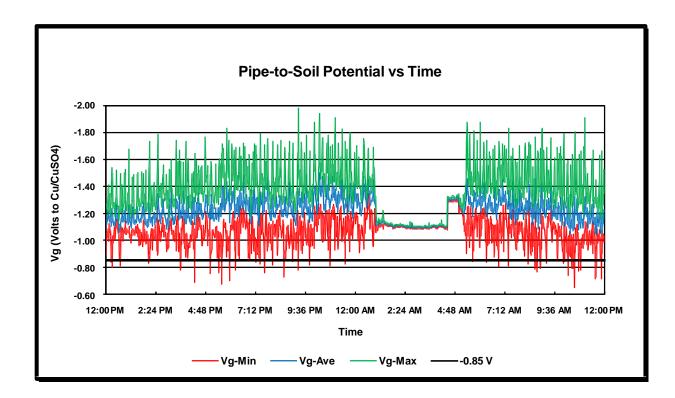

TYPICAL CATHODIC PROTECTION SYSTEM TEST STATION INSTALLATIONS


TYPICAL ISOLATING FLANGE ASSEMBLY

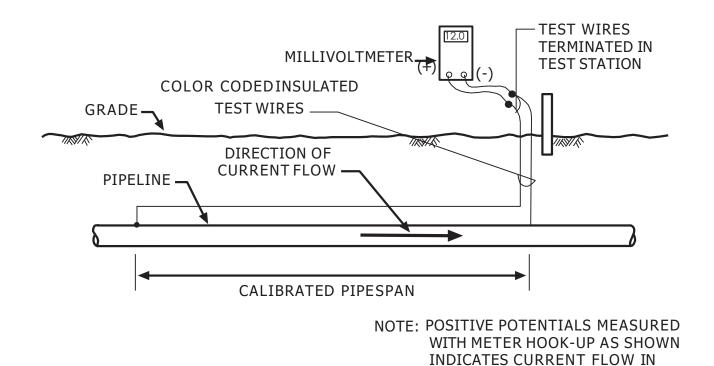
TYPICAL ISOLATING UNION DETAIL


TYPICAL ISOLATED CASING DETAIL

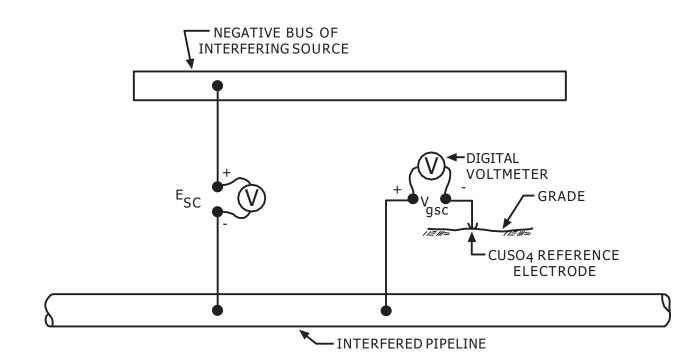
Advanced Chapter 4 Dynamic Stray Current Analysis

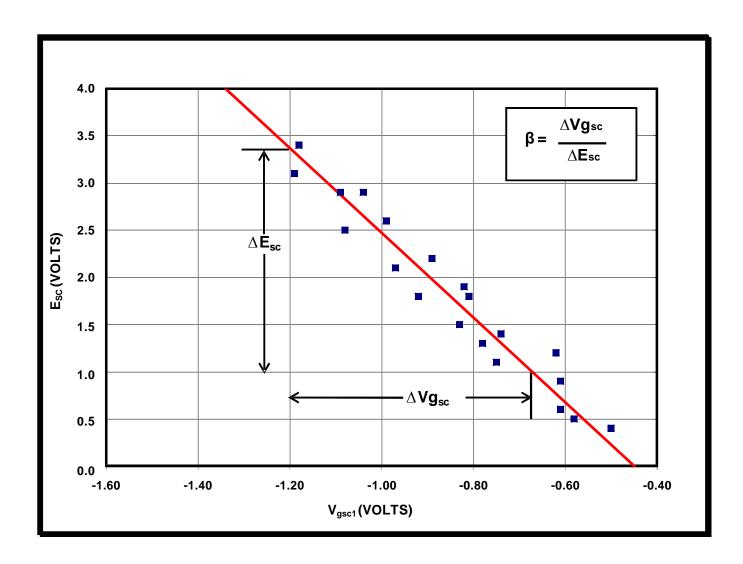


Appalachian Underground Corrosion Short Course

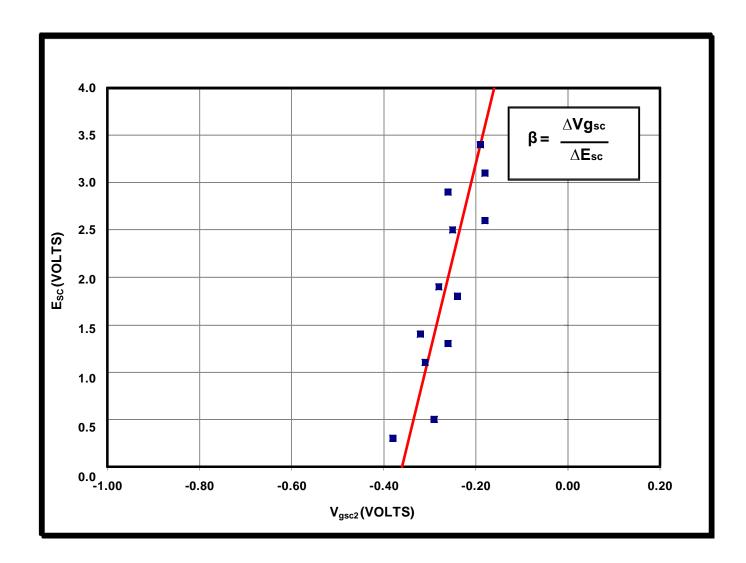

CURRENT FLOW CAUSED ON STRUCTURE WITHIN A VOLTAGE GRADIENT FIELD

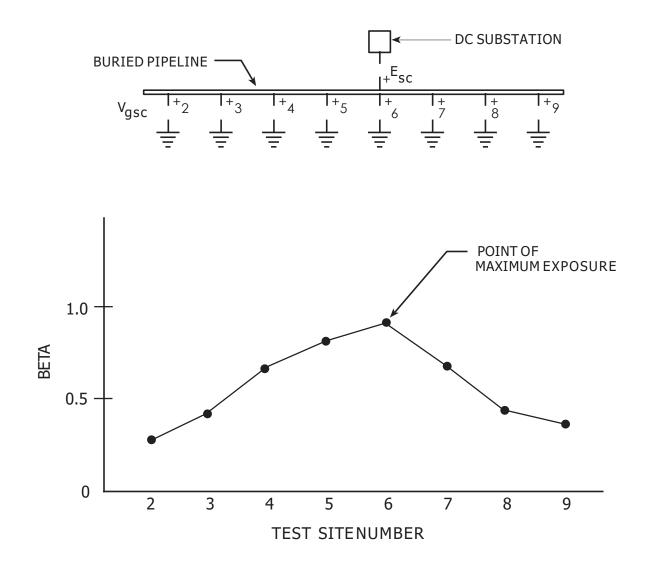
TYPICAL PIPE-TO-SOIL POTENTIAL (Vg) PROFILE INDICATING DYNAMIC STRAY CURRENT


DETERMINING DIRECTION OF LINE CURRENT FLOW

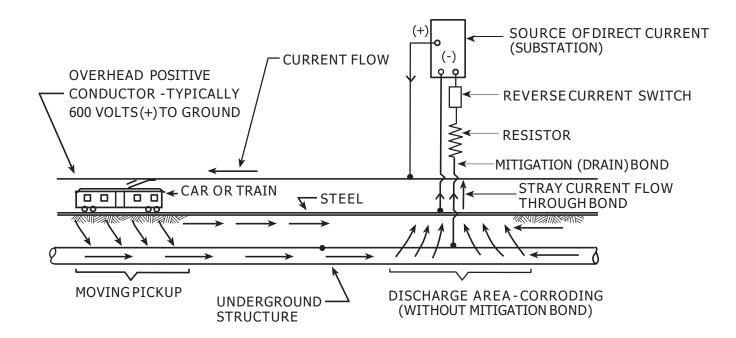

DIRECTION SHOWN

TYPICAL TEST SET-UP USED TO LOCATE POINT OF MAXIMUM EXPOSURE

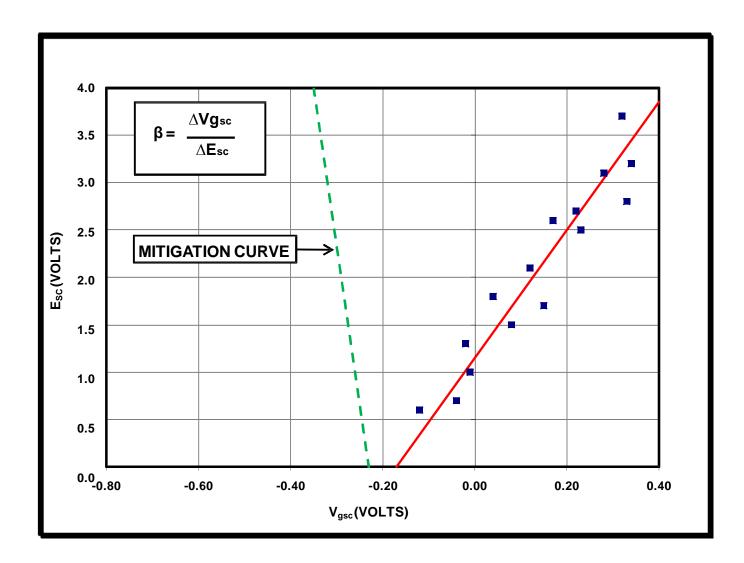


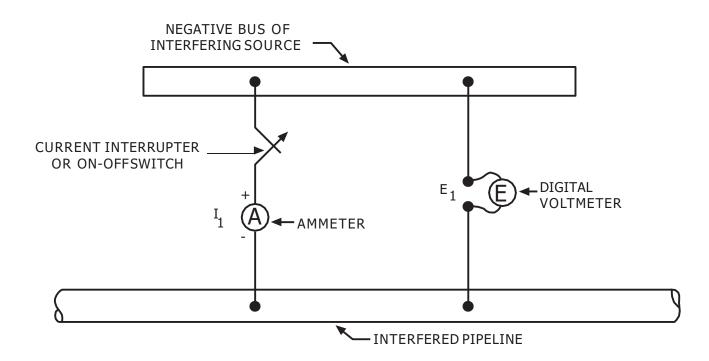

TYPICAL BETA CURVE - PICKUP AREA

TYPICAL BETA CURVE - DISCHARGE AREA

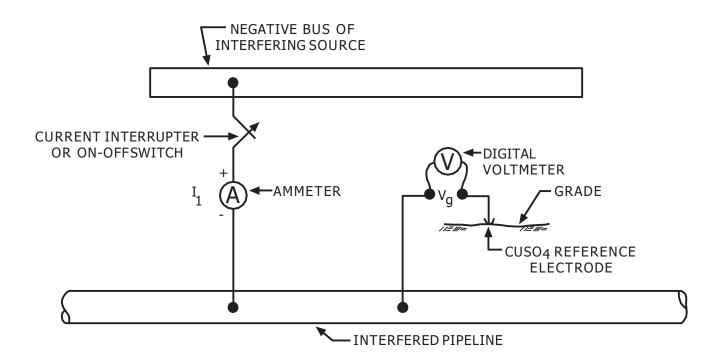


LOCATING THE POINT OF MAXIMUM EXPOSURE FROM A BETA PROFILE


FIGURE 4-7


INSTALLATION OF A MITIGATION BOND ON A DC TRANSIT SYSTEM TO PREVENT STRAY CURRENT CORROSION

TYPICAL BETA CURVE - DISCHARGE AREA (MITIGATION CURVE)

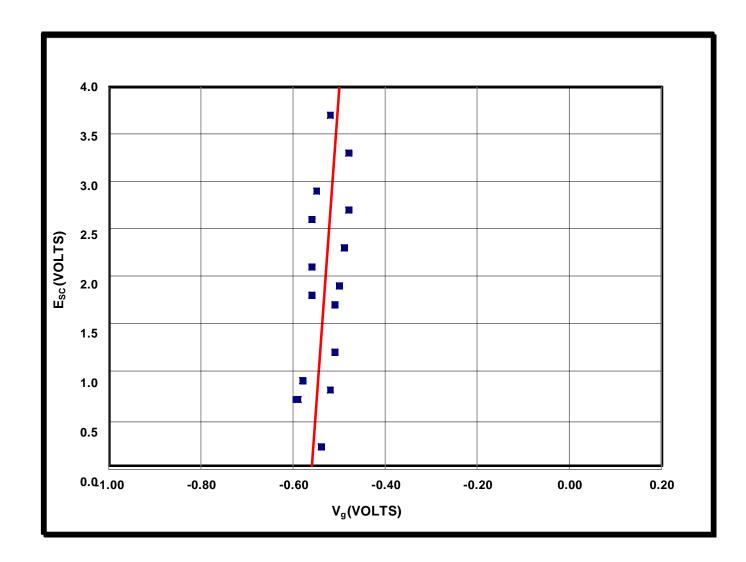


Several sets of data are taken by interrupting the current circuit. Current and voltage are taken simultaneously with the switch closed (on) and open (off: $I_1 = 0$). The resistance between the two structures (R₁₋₁) is calculated from Ohm's Law:

$$\mathbf{O}E_1 = E_{1ON} - E_{1OFF}$$

 $\mathbf{O}I_1 = I_{1ON} - I_{1OFF} (I_{1OFF} = \mathbf{0})$
 $R_{int} = \mathbf{O}E_1 / \mathbf{O}I_1$

TYPICAL TEST SET-UP USED TO DETERMINE INTERNAL RESISTANCE (Rint) BETWEEN THE PIPE AND NEGATIVE BUS



Several sets of data are taken by interrupting the current circuit. Current and pipe to soil potential readings are taken simultaneously with the switch closed (on) and open (off: $I_1 = 0$). The change in pipe to soil potential per ampere of current flow (Vg/I_1) is calculated from Ohm's Law and is expressed as volts per ampere (V/A):

 $V_{g} = V_{gON} - V_{gOFF}$ $I_{I} = I_{1ON} - I_{1OFF} (I_{1OFF} = 0)$ $V/A = V_{g}/Q I_{1}$

TYPICAL TEST SET-UP USED TO DETERMINE PIPE TO SOIL POTENTIAL CHANGE PER AMPERE OF DRAINAGE CURRENT

BETA CURVE PLOTTED AT POINT OF MAXIMUM EXPOSURE

TABLE 4-1

R_{int} Data - See Figure 4-10

	E₁ (Volts)	I₁ (Amperes)	R _{int} (ohms)
On	+1.30	36.0	
Off	-1.15	0	
Delta	+2.45	36.0	0.068
On	+0.80	39.0	
Off	-1.80	0	
Delta	+2.60	39.0	0.067
On	+0.50	41.0	
Off	-2.30	0	
Delta	+2.80	41.0	0 .068
On	+2.10	29.0	
Off	0.00	0	
Delta	+2.10	29.0	0.072
On	+2.00	29.5	
Off	-0.15	0	
Delta	+2.15	29.5	0.073
On	+1.30	35.0	
Off	-1.25	0	
Delta	+2.55	35.0	0.073
On	+0.35	43.0	
Off	-2.65	0	
Delta	+3.00	43.0	0.070
		Average R _{int} =	0.070

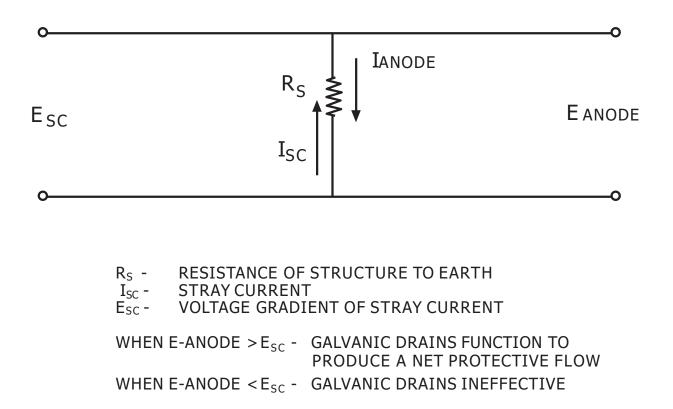
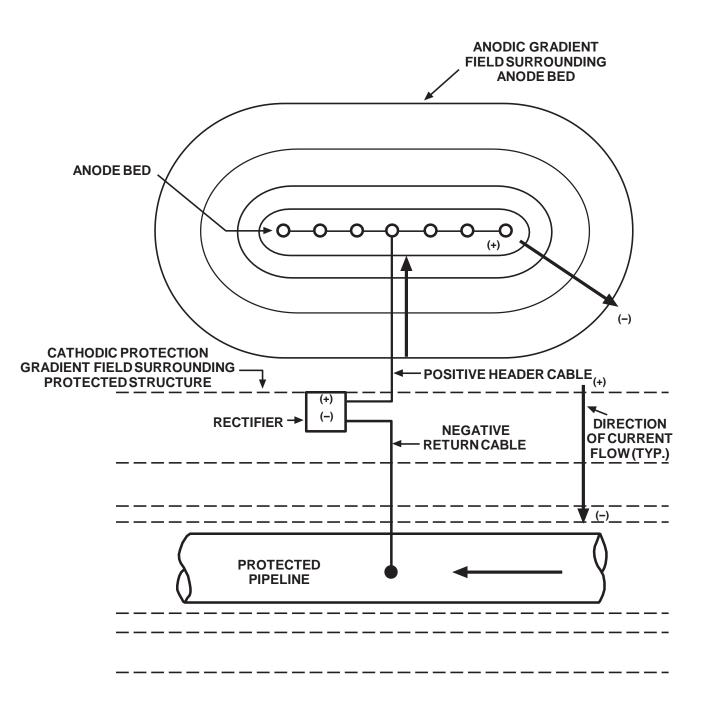


TABLE 4-2

$)V_g/I_1$ Data - See Figure 4-11

	V _g (Volts)	I₁ (Amperes))V _g /I ₁ (V/A)
On	0.645	34.0	
Off	0.590	0	
Delta	0.055	34.0	0.00162
On	0.635	23.0	
Off	0.600	0	
Delta	0.035	23.0	0.00150
On	0.770	82.0	
Off	0.620	0	
Delta	0.150	82.0	0.00183
On	0.770	86.0	
Off	0.625	0	
Delta	0.145	86.0	0.00168
		Average)V _g /I ₁ =	0.00169


SIMPLE EQUIVALENT CIRCUIT FOR GALVANIC ANODE DRAIN

Advanced Chapter 5 Design of Impressed Current Cathodic Protection

Appalachian Underground Corrosion Short Course

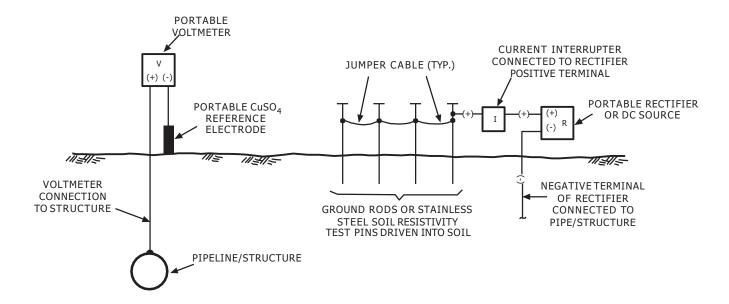

REMOTE ANODE BED OPERATION

TABLE 5-1 Typical Soil Resistivity Data

Galvanometer Dial Reading	Multiplier Setting	Resistance (Ohms)	Spacing (ft)	Factor	Resistivity (Ohm-cm)
2.4	10	24	2.5	191.5	11,490
1.6	10	16	5	191.5	15,320
10.2	1	10.2	10	191.5	19,533
6.2	1	6.2	15	191.5	17,801
2.6	1	2.6	20	191.5	9,958
8.2	0.1	0.82	25	191.5	3,926

TYPICAL CURRENT REQUIREMENT TEST SET UP

TABLE 5-2 Typical Current Requirements Based On Coating System Effective Resistance

Effective Coating Resistance ⁽¹⁾ (ohm-ft ²)	Current Requirement (Amperes)
Bare Pipe ⁽²⁾	187.50
10,000	3.73
25,000	1.49
50,000	0.75
100,000	0.37
500,000	0.075
1,000,000	0.0373
5,000,000	0.007
"Perfect Coating"	0.000015

- (1) Effective coating resistance, as defined in the above table, of 10,000 to 25,000 ohm-ft² indicates poor application or handling during installation. Resistance of 100,000 to 5,000,000 ohm-ft² indicates good to excellent application. Installation in 1,000 ohm-cm soil.
- (2) Bare pipe in this table is assumed to require a minimum of 1.5 milliamperes per sq. ft. of pipe surface. In practice, most design engineers use 2 milliamperes per sq. ft. for pipe-in-soil, unless the environment is acidic, contains high concentrations of chlorides, bacteria, or the pipe is operating at elevated temperatures. In these cases, as much as 3.5 to 5.0 milliamperes per sq. ft. may be required.

Determining Current Requirements for an Existing Structure - Example #2

A temporary anode bed is set up using 5 ground rods and a portable rectifier. The ground rods are driven approximately $1\frac{1}{2}$ feet into the ground at 10-foot spacing. The measured output of the rectifier is 34 volts and 0.40 amperes. While interrupting the rectifier output, the following pipe-to-soil potential readings were taken at various locations with respect to a CSE, placed directly over the pipeline in the area under the influence of the temporary anode bed, and the change in potential (ΔV) was calculated.

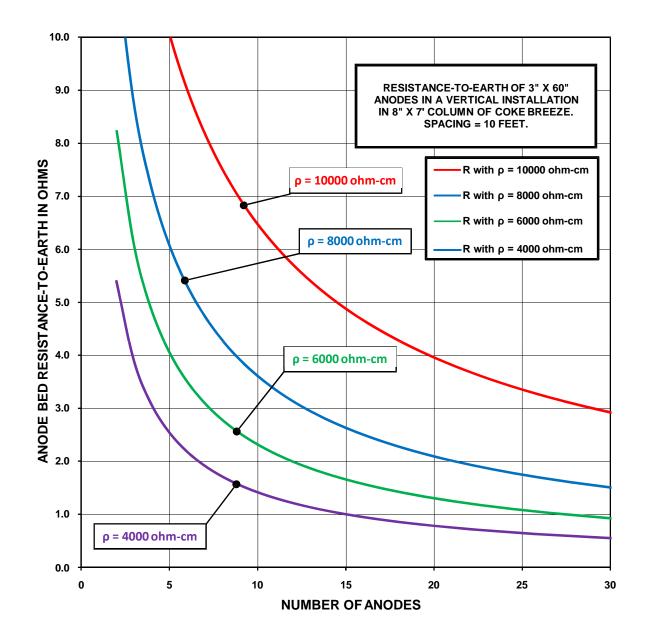
PIPE-TO-SOIL POTENTIAL (Volts to CSE)					
Location	V-On	V-Off	ΔV		
1	-0.592	-0.561	-0.031		
2	-0.570	-0.523	-0.047		
3	-0.603	-0.545	-0.058		
4	-0.598	-0.527	-0.071		
5	-0.693	-0.575	-0.118		
6	-0.833	-0.635	-0.198		
7	-0.865	-0.650	-0.215		
8	-0.814	-0.611	-0.203		
9	-0.731	-0.605	-0.126		
10	-0.655	-0.590	-0.065		
11	-0.630	-0.575	-0.055		
12	-0.640	-0.580	-0.060		

Step No. 1 - Using the lowest voltage shift (ΔV) measured during the tests, calculate the voltage shift required to satisfy the -0.85 volt On cathodic protection criterion.

 Δ V-Low = Lowest Voltage Shift = -0.031 Volts at Location #1.

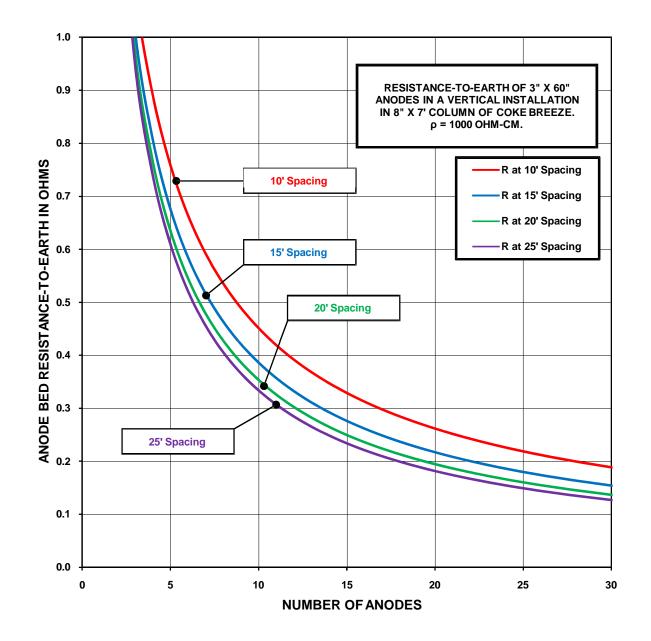
V-Off = -0.561 at Location #1.

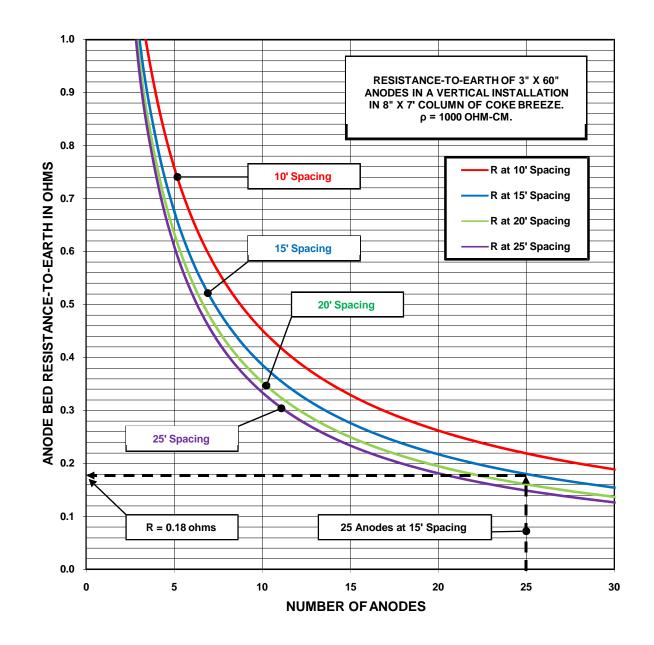
 ΔV -Req = Required Voltage Shift = -0.850 - (-0.561) = -0.289 Volts

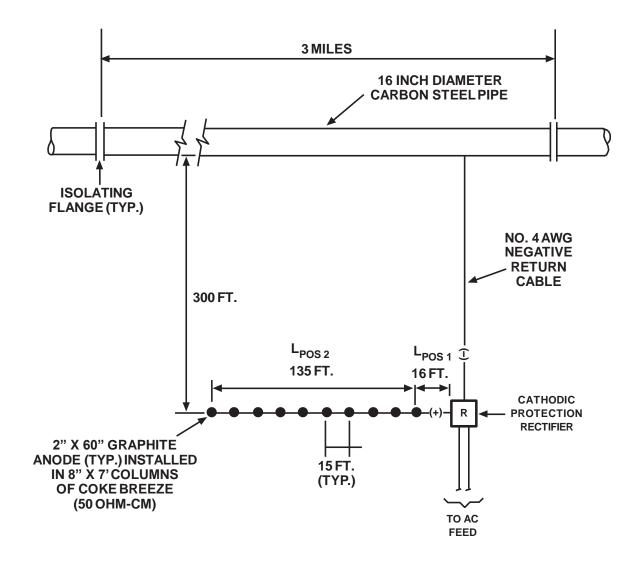


Chapter 5 - Design of Impressed Current Cathodic Protection

TABLE 5-3 Approximate Current Requirements for Cathodic Protection of Steel


Environment		mA/ft²	
Sea Water	- Cook Inlet	35 - 40	
	–North Sea	8 -15	
	-Persian Gulf	7 -10	
	–US - West Coast	7 -8	
	-Gulf of Mexico	5 -6	
	-Indonesia	5 -6	
Bare Steel in So	bil	1 -3	
Poorly Coated	0.1		
Well Coated Steel in Soil or Water0.003			
Very Well Coat	ed Steel in Soil or Water	0.003 or less	


ANODE BED RESISTANCE-TO-EARTH OF 8" x 7' ANODES AT 10 FT SPACING AT VARIOUS SOIL RESISTIVITY VALUES


ANODE BED RESISTANCE-TO-EARTH OF 8" x 7' ANODES IN 1000 OHM-CM SOIL AT VARIOUS SPACINGS

USING A GRAPH TO DETERMINE ANODE BED RESISTANCE-TO-EARTH

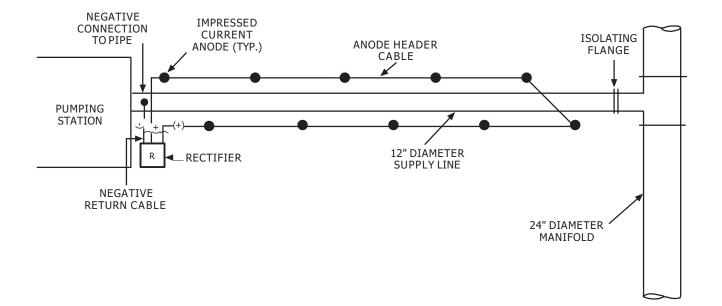
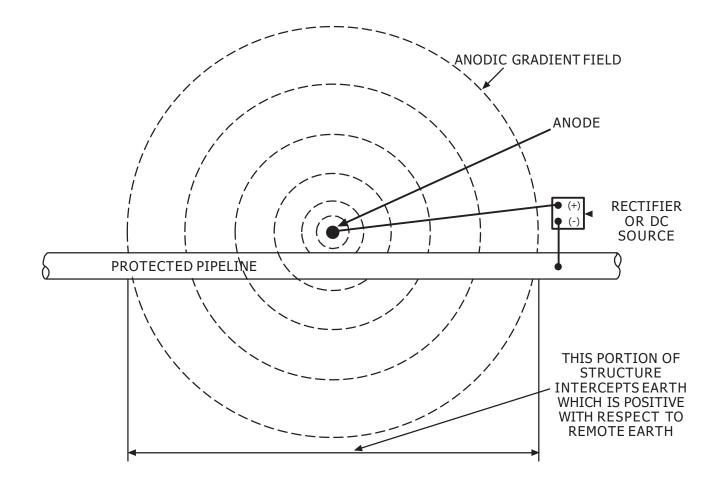
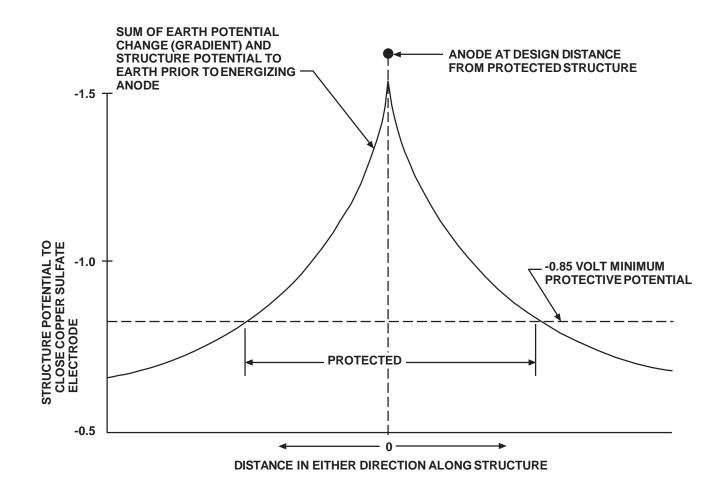
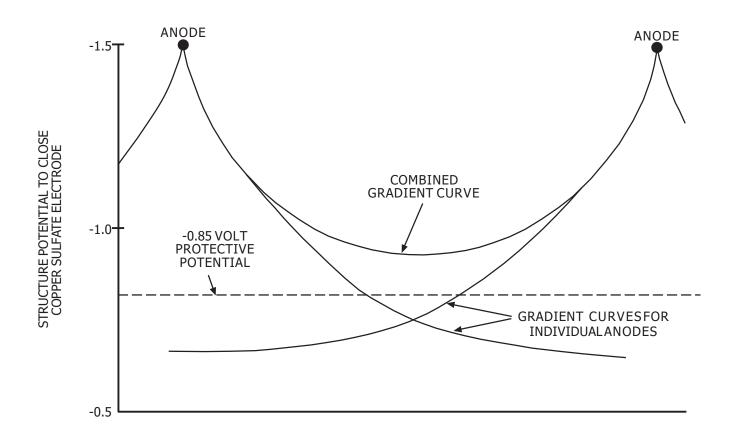
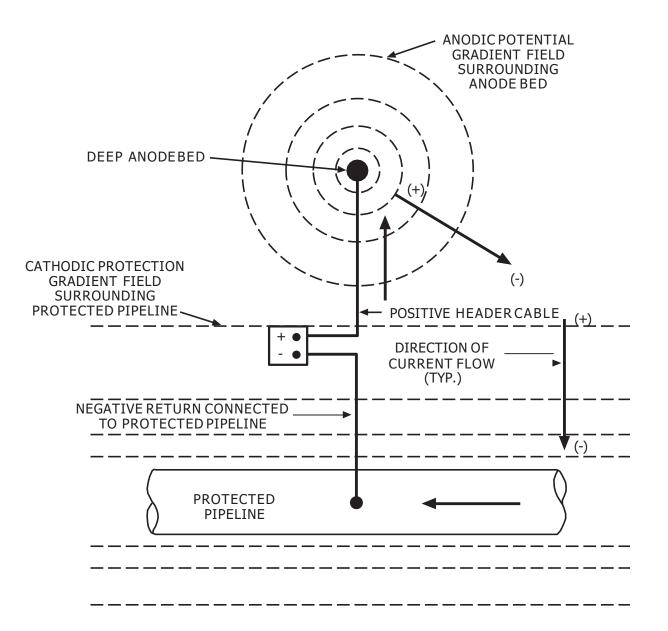

TYPICAL REMOTE ANODE BED DESIGN

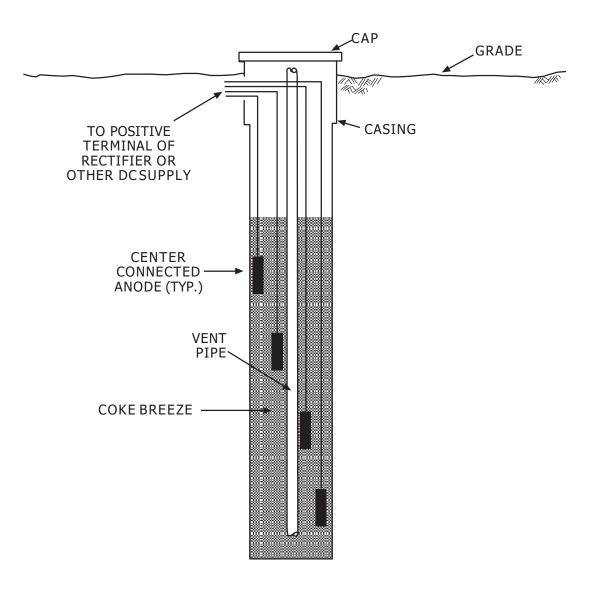
TABLE 5-4Concentric Stranded Single Conductor Copper Cable Parameters


Size AWG	Overall Diameter Not Including Insulation (Inches)	Maximum DC Resistance @ 20°C (Ohms/1000 ft)	Maximum Allowable DC Current Capacity (Amperes)
14	0.0726	2.5800	15
12	0.0915	1.6200	20
10	0.1160	1.0200	30
8	0.1460	0.6400	45
6	0.1840	0.4030	65
4	0.2320	0.2540	85
3	0.2600	0.2010	100
2	0.2920	0.1590	115
1	0.3320	0.1260	130
1/0	0.3730	0.1000	150
2/0	0.4190	0.0795	175
3/0	0.4700	0.0631	200
4/0	0.5280	0.0500	230
250 MCM	0.5750	0.0423	255


TYPICAL DISTRIBUTED IMPRESSED CURRENT ANODE SYSTEM


ANODE BED ARRANGEMENT FOR EARTH POTENTIAL SWING CATHODIC PROTECTION


POTENTIAL GRADIENT FIELD AROUND A VERTICAL ANODE


INTERACTION BETWEEN ADJACENT DISTRIBUTED ANODES

TYPICAL DEEP ANODE BED OPERATION

TYPICAL DEEP ANODE BED

Advanced Chapter 6 Design of Galvanic Anode Cathodic Protection

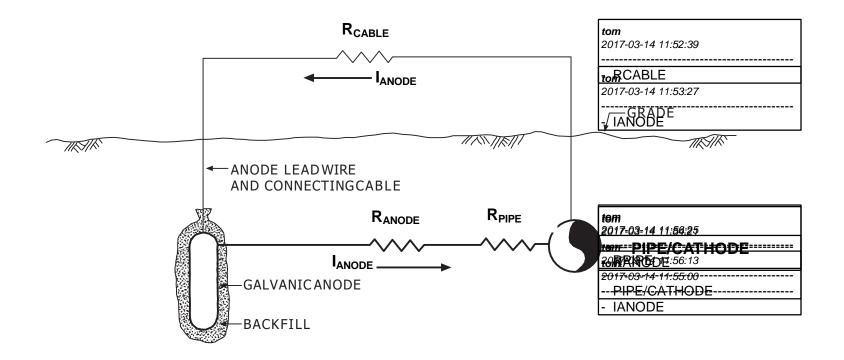

Appalachian Underground Corrosion Short Course

TABLE 6-1Typical Operating Characteristics of Galvanic Anodes

Galvanic Anode Material	Theoretical Capacity (amp-hr/lb)	Actual Capacity* (amp-hr/lb)	Consumption Rates (Ib/amp-yr)	Current Efficiency	Negative Potential to CSE (Volts)
Zinc (Mil-A-18001 U)	370	370	23.7	90%	1.10
Magnesium (H-1 Alloy)	1000	250 - 580	15 - 35	25 - 58%	1.40 - 1.60
Magnesium (High Potential)	1000	450 - 540	16 - 19	45 - 54%	1.70 - 1.80

* Based on shown current efficiencies.

GALVANIC ANODESYSTEM ELECTRICAL CIRCUIT

FIGURE 6-1

TABLE 6-2Resistance of Concentric Stranded Copper Single Conductors

Size AWG	Max. DC Resistance @ 20º C (ohms/1000 ft)
14	2.5800
12	1.6200
10	1.0100
8	0.6400
6	0.4030
4	0.2540
3	0.2010
2	0.1590
1	0.1260
1/0	0.1000
2/0	0.0795
3/0	0.0631
4/0	0.0500
250 MCM	0.0423

TYPICAL GALVANIC ANODE SYSTEM INSTALLATION

FIGURE 6-2

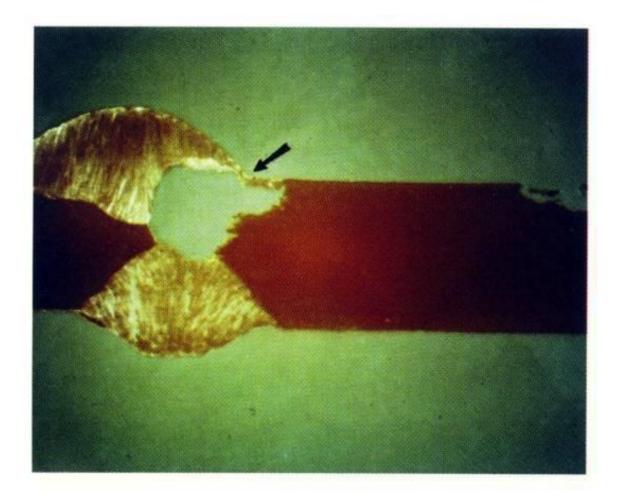

TABLE 6-3 Anode Shape Factors (F)

Anode Weight (lbs)	Anode	Factor (F)			
	Standard Anodes				
3	(Packaged)	0.53			
5	(Packaged)	0.60			
9	(Packaged)	0.71			
17	(Packaged)	1.00			
32	(Packaged)	1.06			
50	(Packaged - anode dimension 8" dia x 16")	1.09			
50	(Packaged - anode dimension 5" x 5" x 31")	1.29			
	Long Anodes				
9	2.75" x 2.75" x 26" backfill 6" x 31"	1.01			
10	1.50" x 4.50" x 72" backfill 4" x 78"	1.71			
18	2.00" x 2.00" x 72" backfill 5" x 78"	1.81			
20	2.50" x 2.50" x 60" backfill 5" x 66"	1.60			
40	3.75" x 3.75" x 60" backfill 6.5" x 66"	1.72			
42	3.00" x 3.00" x 72" backfill 6" x 78"	1.90			
Extra-Long Anodes					
15	1.6" dia x 10' backfilled to 6" dia	2.61			
20	1.3" dia x 20' backfilled to 6" dia	4.28			
23	2.0" dia x 10' backfilled to 8" dia	2.81			

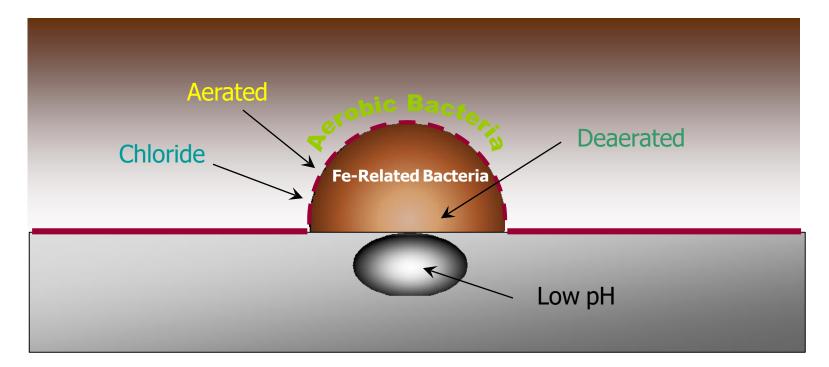
TABLE 6-4 Driving Voltage Correction Factors (Y)

P/S	Standard Magnesium	High-Potential Magnesium	Zinc
-0.70	1.21	2.14	1.60
-0.80	1.07	1.36	1.20
-0.85	1.00	1.29	1.00
-0.90	0.93	1.21	0.80
-1.00	0.79	1.07	0.40
-1.10	0.64	0.93	
-1.20	0.50	0.79	

No of Anodes in parallel	Adjustment Factors (anode spacing in feet)			
	5'	10'	15'	20'
2	1.839	1.920	1.946	1.965
3	2.455	2.705	2.795	2.848
4	3.036	3.455	3.625	3.714
5	3.589	4.188	4.429	4.563
6	4.125	4.902	5.223	5.411
7	4.652	5.598	6.000	6.232
8	5.152	6.277	6.768	7.035
9	5.670	6.964	7.536	7.876
10	6.161	7.643	8.304	8.679



Advanced Chapter 7 MIC Inspection and Testing


Appalachian Underground Corrosion Short Course

MIC OF 304 SS WELD Under Tubercle Illustrated

From Little, Wagner, and Mansfeld

TUBERCLE BUILD-UP WITH IRON-RELATED BACTERIA

IRB Create a Differential Oxygen Corrosion Cell with Low pH Environment

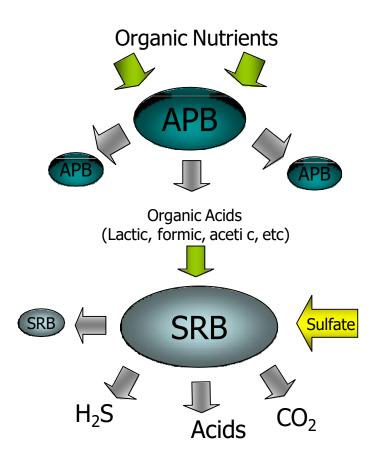
METALLURGICAL Pope and GRI

a. Striations in cupped pit bottoms

c. Pit products in b. removed

b. Corrosion in pit

d. Brushed cupped pits in c.


MICROBIOLOGICAL Aerobic and Anaerobic

- Aerobic Require O₂ and Nutrient
- Consume O₂ and Produce Organic Acids Corrosive to Steel
- Protection Requirements Less Well Defined

- Occur with Anaerobic Bacteria
- Form Complex Communities Dominated by Acid Producing Bacteria
- MIC a Result of Microbe Community, Not SRB Alone

MICROBIOLOGICAL COMMUNITY Example APB and SRB

- Organic Nutrients Feed APB
- APB Products Nutrients
 for SRB
- SRB Fed by Organic Acids and Sulfate
- Produce more APB and SRB
- Chlorides with Acids (H⁺) Lower pH and Corrode Steel

MICROBIOLOGICAL SRB Theory (Anaerobic)

- 8H₂O⇒8OH⁻+8H⁺
- 4Fe⇒4Fe+2+8e- (A)
- 8H++8e-⇒8H (C)
- SO₄-2+8H +Bacteria ⇒
 S⁻²+4H₂O
- Fe⁺²+S⁻²⇒FeS (A)
- 3Fe⁺²+6OH⁻ 3Fe(OH)₂
 ⇒ (A)
- FeS Depolarizes

- Need Nutrient
 - Soil biomass
 - Coating adhesive
- Need No or Low O₂
 - Wet soil
 - Low areas
 - Crevices
- More Protection (Current) Needed to Overcome Effects

MIC TESTING

- Field Test Kits for Viable Bacteria
 - SRB, APB, anaerobic, aerobic, iron related
 - Bacteria count—10 to 10⁵ (10⁴) colonies/ml
- Test Soil or Surface Product
- Create Slurry
- Inoculate Culture Media Vials
- Compare After 2 5 Days, 15 Days

TEST KIT INTERPRETATION

- Presence of Bacteria Not Conclusive of MIC
- SRB Often Do Not Dominate
- Not Uncommon to Find All Tested Bacteria Present
- Interpret Indications with Caution
 - 1 to 3 bottles may have problem
 - 1 to 5 bottles possible problem

CULTURE TEST Results

POSITIVE REACTIONS SHEET - MICkitTM III

1. Uninoculated (Negative) 2. Positive – Cloudy 3. Positive – Slime 4. Positive – Fungus

Uninoculated (Negative)
 Positive – Orange color change
 Positive – Yellow color change

1 2

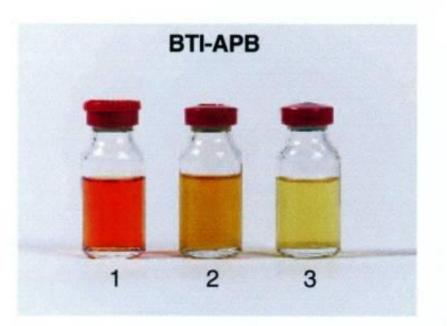
3

BTI-THIO

1 2

1. Uninoculated (Negative) 2. Positive – Cloudy

1. Uninoculated (Negative) 2. Positive – Black color change 3. Positive – Slime formation on nail



Aerobic Bacteria Test

- 1. Uninoculated (Negative)
- 2. Positive Cloudy
- 3. Positive Slime
- 4. Positive Fungus

APB Bacteria Test

- 1. Uninoculated (Negative)
- 2. Positive Orange color change
- 3. Positive Yellow color change