Intro to Coatings

Doug Klingensmith, Unconventional Solutions

Coatings

- Corrosion control is not a perfect science.
- There is not one instrument that does everything.
- There is not one test that tells us everything.
- There is not a perfect coating that will work in every scenario.

Coatings

- Most integral part of the cathodic protection system.
- Required to create a cost effective corrosion control program.
- Extends pipeline design life.

Coatings

- A pipeline coating acts as a barrier between the pipe and the electrolyte.
 - NACE definition of a coating:
 - A coating is film forming material that protects the surface to which it is applied.

• What are the 4 components of a corrosion cell?

- Anode
- Cathode
- Electrolyte
- Metallic Path

 The coating breaks the circuit by isolating the pipe from the electrolyte.

Good Coating Characteristics

- Good Adhesion to Pipe
 - Adhesive strength is the measure of how well coating is bonded to pipe.
- Good Cohesive Strength
 - Cohesive strength is the measure of ability of coating film layer not to pull apart internally or stay bonded to itself.

Good Coating Characteristics

- Ease of application
- Resistance to Damage
- Flexibility
- Resistance to Flow
- Good Electrical Resistance
 - Dielectric Strength
- Water Resistance
- Chemical & Physical Stability
- Resistance to Soil Bacteria

- Resistance to Marine Organisms
- Resistance to Cathodic Disbondment
- Resistance to Soil Stress

Laboratory Tests

- Some of the laboratory tests
 - Salt Crock Cathodic Disbondment Test ASTM G-8
 - Dielectric resistance is the amount of voltage necessary to break down a given coating of specified coating thickness.
 - ASTM G-9 lab test is for water penetration.

Salt Crock Cathodic Disbondment Test ASTM G-8

Salt Crock Cathodic Disbondment Test ASTM G-8

Holiday Detection

- Holiday is a coating defect.
- Holiday detector is sometimes called a jeep spring or brush type.
- ASTM G-62 is the test procedure for setting a Holiday detector.
- Typical criteria for detection is 100-125 VDC per mil of coating.
- When in doubt of setting, create a holiday in existing coating.

Holiday Detection

Jeeping Pipe at Mill

Holiday Detection

Checking Holiday Detector

- Check batteries at least once a day.
- Verify calibration, the voltage you set is the voltage you get.
- Verify calibration, the voltage you set is the voltage you get.
- Make sure the detectors tail is grounded.
 - Pipe should be grounded
 - Detector should be grounded to pipe
 - If possible
- Caution High Voltage!!

Coating Application

Coatings may be applied at a coating facility or in the field

Coating Application: Surface Prep

- Surface preparation is determined by:
 - Coating Type
 - Wax, Liquid Epoxy, Shrink Wrap, etc.
- Field conditions if applied in the field
- Owners Coating Specification
- Manufacturer's recommendations
 - Manufacturer's Application Data Sheet

Coating Application: Cleanliness

- SSPC list various specifications. NACE has comparable specifications.
- SSPC SP 7- Brush Off Blast
- SSPC SP 6 Commercial Blast
- SSPC SP 10 Near White
- SSPC SP 5 White
- SSPC SP 1, 2, 3 Solvent Cleaning, Hand Tool Cleaning and Power Tool Cleaning.

Coating Application: Cleanliness

Coating Application: Cleanliness

Coating Application: Profile

- Profile is the roughness of the surface as measures in mils (1/1000 inch)
- Increases surface area
- Profile is determined by coating manufacturer
- Profile is measured by various methods
 - One method commonly used is replica tape

Coating Application: Profile

Replica Tape

Spring Micrometer

Coating Application: Profile

Coating Types: Surface Prep

Over 60% of al coating failures are due to improper or poor surface preparation!

Coating Types: Mill Applied Coatings

- Fusion Bond Epoxy (FBE)
- Liquid Epoxy
- Crosshead Die Extruded Polyethylene
- Calendar Type Multi-Layer Tape
- A variety of specialty type coatings

Coating Types: Mill Applied FBE Coatings

- Applied 12 16 mils thick (per owner spec)
- Preparation is critical.
- All chlorides or soluble salts must be removed with an acid wash.
- The acid must be removed by de-ionized water wash.
- Water must be removed by heating.
- A near white blast surface is required. SP 10
- Pipe is heated to 450 500 degrees F, sprayed on as a powder and melts onto the pipe.

Pipe Starting on the Coating Line

Preheat Ovens

FBE Being Applied To Pipe

FBE Being Applied To Pipe

Coating Types: Mill Applied Liquid Epoxies

 Liquid epoxies are normally applied externally for corrosion protection or as an ARO with and average thickness in mils of 20

Checking the Pipe for Holidays

Patching the Holidays using Melt Stick

Checking the Coating Dry Film Thickness

Pipe Straps for Bend Test

Pipe Straps for Bend Test

Dolly's For Adhesion Test

Performing Adhesion Test

Performing Adhesion Test

Extruded Polyethylene Coating

- Requires commercial blast
- 10 mils of asphalt based rubberized adhesive
- Extruded polyethylene is normally 40 mils in thickness

Pipe on the Grinding Rack

Applying Extruded Polyethylene

Extruded Polyethylene Coated Pipe

Calendar Type Multi-Layer Coating

- Requires a commercial blast
- Applied at 50-80 mils
- Not used very often

Calendar Type Multi-Layer Coating

Coal Tar Coating

- Used extensively in the past.
- Now used very little due to environmental and health concerns.
- Applied approximately 120 mils thick.
- In the past, coal tar was covered with asbestos felt wrap.
- Major concerns over large disbondment areas.

Coal Tar Coating

- Used extensively in the past.
- Now used very little due to environmental and health concerns.
- Applied approximately 120 mils thick.
- In the past, coal tar was covered with asbestos felt wrap.
- Major concerns over large disbondment areas.

Applying Coal Tar Over the Ditch

Coating Girth Welds in the Field

Removing Hot Coal Tar from the "Dope Pot"

Field Applied Coatings

- Liquid Epoxies
- Hot applied tapes
 - Coal tar based
 - 60 mils with 50% overlap
- Cold applied polyethylene tapes
 - Applied 30-65 mils with a primer
- UV resistant tape
- Heat shrink sleeves/tubes
- FBE field applied coating for girth welds
- Rock shield

Sandblasted Girth Weld

Installing Shrink Sleeves

Installing Shrink Sleeves

Installing Shrink Sleeves

Completed Shrink Sleeves

Maintenance Application Coatings

- Must be compatible with existing coating.
- Liquid epoxies
- Hot applied coal tar tapes
- Cold applied polymer tapes
- Surface tolerant liquid polymer tapes
- Liquid mastics
- Sealants
- Hot applied waxes
- Cold applied waxes
- Petrolatum

Applying Cold Polymer Tape

Applying Cold Polymer Tape

Maintenance Application Coatings

- Liquid coal tar epoxies
- Two part epoxies
- High temperature tapes
- Flange fillers

Applying Hot Wax in the Field

Applying Wax Paper

Applying Wax Paper

Applying Petrolatum Tape

Pipe Being Coated with Liquid Epoxy at Girth Welds

Pipe Being Recoated with Liquid Epoxy Spray Grade

Pipe Being Recoated with Liquid Epoxy Spray Grade

Spray Application Epoxy

Pipe Being Recoated with Liquid Epoxy

Atmospheric Corrosion

- UV degradation
- UV resistant cold applied tape
- Cold applied petrolatum tape
- Various painting systems

Atmospheric Corrosion

Atmospheric Corrosion

Risers

- Some of the most severe corrosion is at the soil interface area at risers
- Two part epoxy with a polyurethane top coat for UV protection
- Wax tapes with protective outer wrap
- Rock shield

Irregular Bolted Couplings, Valves, Fittings, Etc.

- Liquid mastics
- Wax or petrolatum tapes
- Wet areas maybe covered with petrolatum

Wax Tape for Atmospheric Conditions

Wax Tape Applied to Valves

High Temperature Areas

- Coal Tar Epoxy
- Epoxy primer and high temperature tape
- Two part epoxies

Flanges and Bolts

- Flange filler
- Flood coating with hot applied wax
- Must provide dielectric resistance
- Must be easily removed for re-entry into flanges

Hot Wax being Poured in a Flange

There are many excellent pipeline coatings. However, not every coating is good for all applications

Conclusion

Correct surface preparation and overall cleanliness of the pipe will create a better environment for coating performance.

Questions?

