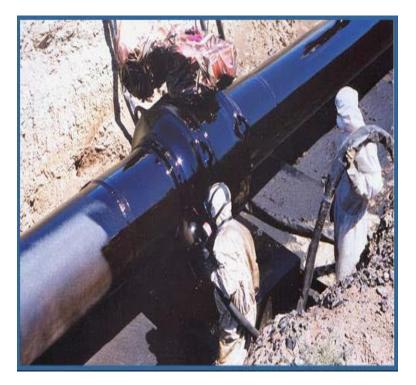
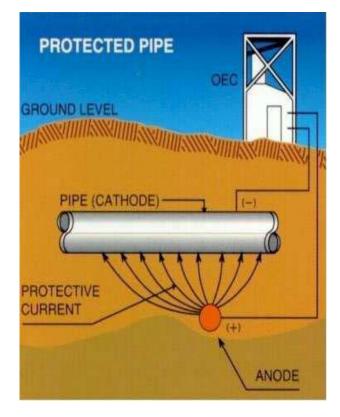
Pipe Coating Failures

Gregory C Hardig, CPR Corrosion Protection Resources LLC

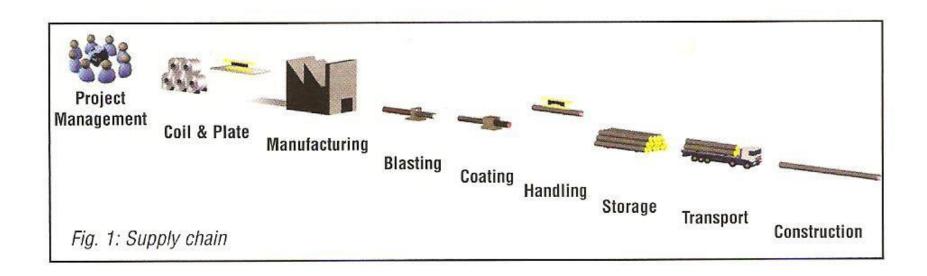
Pipeline Coating Failures



Corrosion Protection


Subsoil Exposure

- Coatings- Designed to protect the pipe surface from its external environment.
 - Adhesion
 - Thickness
 - Hardness
 - Dielectric Strength


Corrosion Protection

- Cathodic Protection-Designed to protect the pipe from corrosion should the coating be damaged or become disbonded from the pipe.
- Electrical current
 - -850 to 800 mv potential range (Coatings / CP)
 - Temperature
 - Soil resistivity

Supply Chain

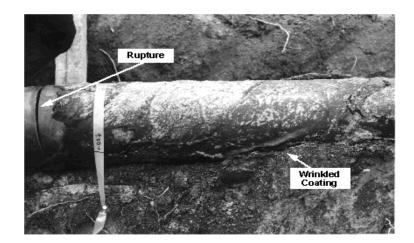
The "Supply Chain" is the sequential efforts of Engineers, Suppliers, Services and Installers. Each party has a well defined role to accomplish specific tasks that will result in a completed pipeline project.

Supply Chain

> Project Sequence

- Design
- Manufacture
- Surface Preparation
- Coating
- Handling
- Storage
- Transportation
- Construction

Design

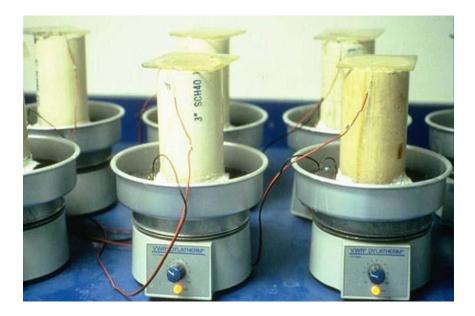

- Atmospheric Exposure
 - UV Degradation
 - Abrasion
 - Environmental
 - Airborne
 Contaminants
 - Structural Supports
 - Operating Temperatures

Design

> Subsoil Exposure

- Operating Temperature
- Cathodic Protection
- Pipeline Insulation
- pH / Moisture
- Abrasion / Impact Resistance
- Backfill Composition
- Chemical Resistance

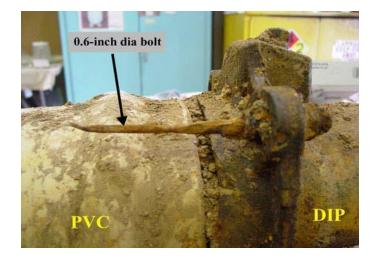
Design



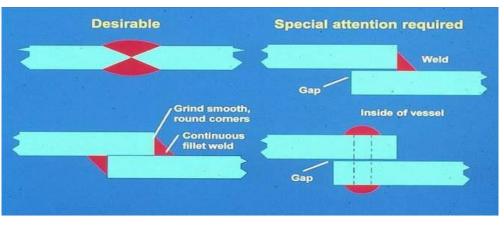
- Immersion / Marine
 - Operating Temperature
 - Cathodic Protection
 - Water Resistance
 - Weight Coating
 - Resistance to Water
 - Fresh
 - Salt
 - Brackish

- Cathodic Protection
 - Cathodic Disbondment

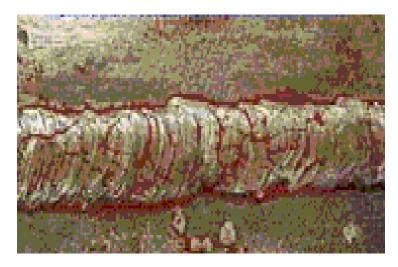
Construction


Cathodic Protection

- CP Sheilding
 - · Occurs after coating failure
 - Prevents CP current access to the steel
 - Limited to buried pipelines onshore.



Fasteners Field Joints


- Nuts & Bolts
- Crevices
- Welds

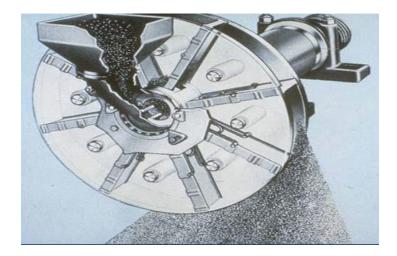
Manufacture

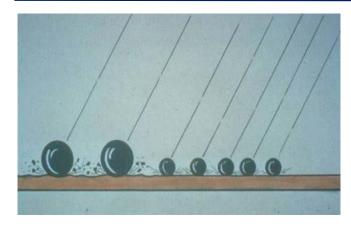
- Fabrication
 - Rolling defects
 - Weld Spatter
 - Sharp edges
 - Surface defects

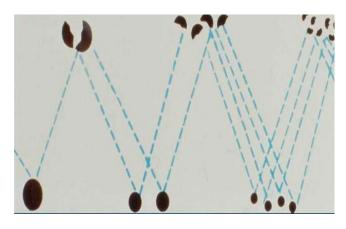
Manufacture

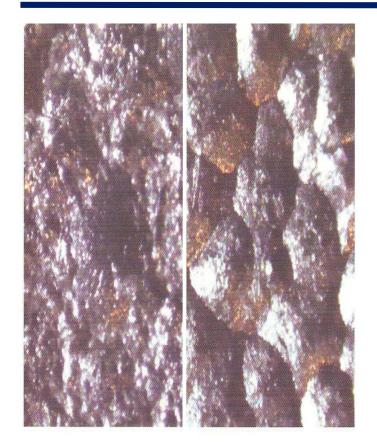
- Material Type
 - Carbon Steel
 - Galvanized Steel
 - Aluminum
 - Copper
 - Ductile iron
 - Concrete

Decontamination




Surface Cleanliness





- > Abrading- Abrasive
 - Surface Profile
 - Anchor Pattern
 - Mechanical Tooth

- > Abrading- Abrasive
 - Surface Profile
 - Anchor Pattern
 - Mechanical Tooth

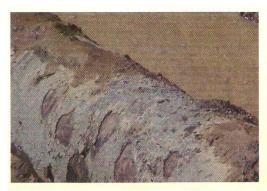
- Quality Control
 - Environmental Conditions
 - Air temperature
 - Relative humidity
 - Dew point

Surface Surface Preparation Preparation

- > Quality Control
 - Surface Conditions
 - Contamination
 - Weld defects
 - Profile
 - Too deep
 - Too shallow

> Quality Control

Adhesion



Coal Tar Enamel

- Water resistant
- Moisture resistant
- Chemical resistant
 - Acid
 - Alkali
- Petroleum products
- Surface tolerant
- Bacteria resistant
- Dielectric strength

Coal Tar Enamel

- Coating System
 - Coal Tar Enamel
 - Glass Reinforced
 - Inner Wrap
 - Outer Wrap-Saturated
 - Kraft Paper Protection
 - UV Rays

Coating

Curing

- Function of time and temperature
- Uncured coatings will absorb moisture
 - Amines- Epoxies
 - Isocyanates- PUR
- FBE- Passivation
 - Chromate wash
 - Phosphate wash
 - Acid wash

Coating

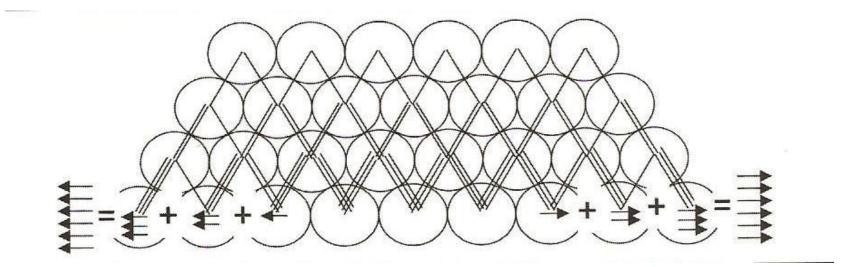
- Quality Control
 - Pipe Temperature
 - Temple sticks
 - Infrared sensors (mixed results)
 - Dry Film Thickness (DFT)
 - Surface Temperature
 - Holiday detection
 - Traceability of pipe
 - Barcodes
 - Standardization

Handling

> Damage

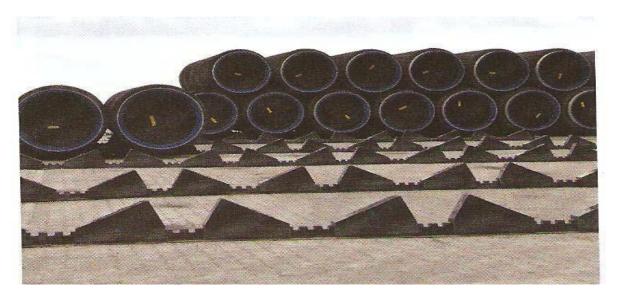
- Lifting and Loading
 - Trailers
 - Trains
 - Vessels- Maritime

Handling



> Equipment

- Fork Lifts
- Grippers
- Pipe Hooks
- Minimize Damage
 - Hydraulic Spreaders
 - Vacuum Lifters



Stacking

- Causes stresses on the piping.
- Deforming the diameter of the pipe.
- Stress is increased at every level

Stacking

- Causes stresses on the coating.
- Stacking- Abrasion and Impact damage where the pipes touch. (3 & 9 o'clock positions)
 - Pipe stacks should be blocked to prevent rolling.

- Environment
 - Soluble Salts
 - Chlorides
 - Nitrates
 - Sulfates
 - Dirt, Dust & Mud
 - Oil, Grease & Lubricants
 - Chemicals
 - Acids
 - Alkalines

Storage

AUCSC(

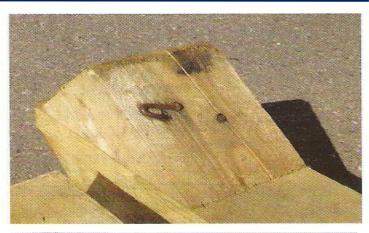
Appalachian Underground Corrosion Short Course

Exposure

- UV Degradation
 Chalking: Deterioration
 of the resin
 / binder because of UV
 - exposure.
- Loss of plasticizers will make the coating brittle and eventually checking in the coating.

Damage

- Abrasion from travel movement
- Loading & Unloading
 - Handling

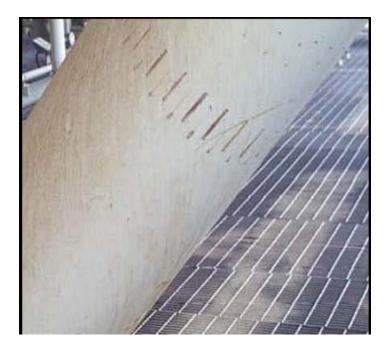


Damage

- Supports and Stops
 - · Abrasion and Impact

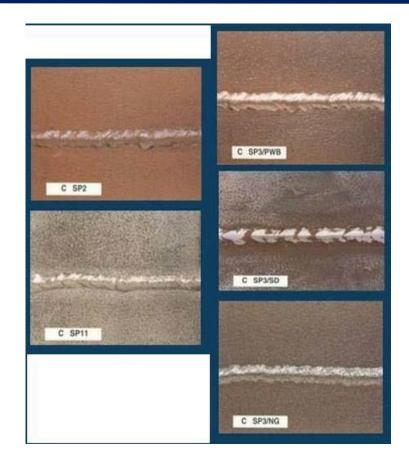
VDI 2700 Association of German Engineers Manual- Securing of loads on road vehicles

> Climate / Environment



Construction

Handling

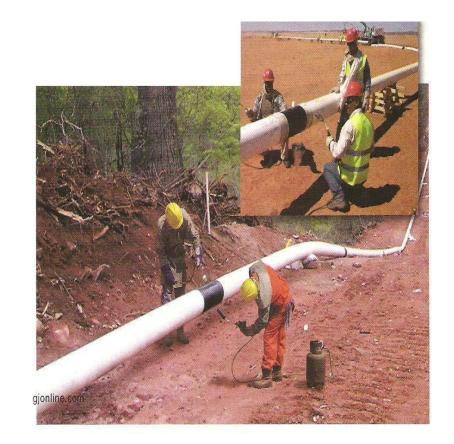


Field Welds

- Surface Preparation
 - Abrasive blast cleaning
 - Hand / Power tool cleaning

- Field Welds- Surface Preparation
 - Nace No. 2
 - SSPC SP 10
 - Minimum cleaning standard

- Field Welds- Surface
 Preparation
 - Surface Profile
 - 2.0- 4.0 mils
 - Measurement method
 - Testex tape



- Field Welds (HSS)
 - Heat- Shrinkable Sleeves
 - 30 year history
 - Cross linking polyolefin.
 - Cured by "Electron irradiation"
 - Polyethylene and Polypropylene coatings
 - Epoxy primer is used for 3layer systems
 - Peel test- Adhesion and cure.

18 in Oil Pipeline

- > 3 layer Polyethylene
- In Line Inspection (ILI)
 - Corrosion 1st 15 km
- > 131F Operating Temp
- Service- 15 yrs
- Wet, compacted sand pH 5.4

> HSS

- Hot melt type / Epoxy Primer
- Surface Prep Power tool

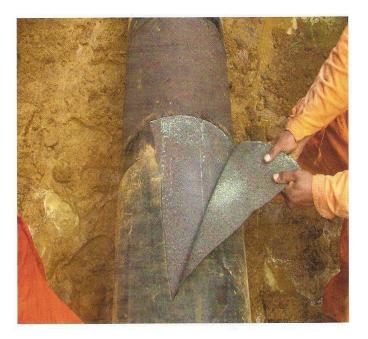
18 in Oil Pipeline

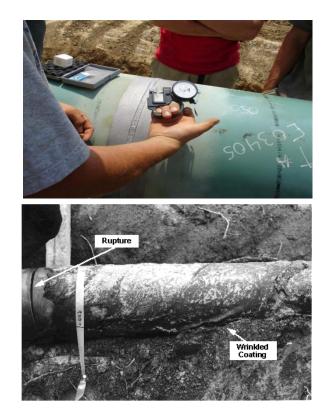
- Massive disbonding of HSS
 - Steel surface
 - 3LPE coating system
- Significant corrosion
 - Field joint
 - Steel surface
- No significant corrosion at lower operating temperatures.

18 in Oil Pipeline

- Longitudinal cracking at the 3 and 9 o'clock positions.
- Showed signs of thermal aging
 - Brittleness
 - Lack of flexibility
- Issues:
 - Storage conditions
 - Soil exposures
 - Service conditions

16 in Oil Pipeline


- > 3 layer Polyethylene
- In Line Inspection (ILI)
 - Severe external corrosion
 - Pitting- "Craters" at field joints
- > 122F Operating Temp
- Service- 12 yrs
- Brackish w/ 2g/liter chlorides
- HSS
 - Hot melt type / Epoxy Primer
 - Surface Prep- Wire brush
 - Millscale on surface
 - Overlap 1 cm (~ 1.2 in)



16 in Oil Pipeline

- Disbonding of HSS
 - Steel surface
 - 3LPE coating system
- Significant corrosion
 - Field joint
 - Steel surface
 - Salt crystals under HSS
- Disbondment fo coating system

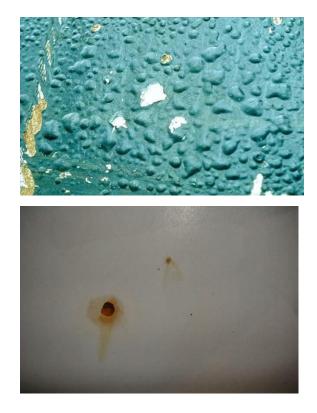
Appalachian Underground Corrosion Short Course

Causes of Disbondment

- Surface preparation
 - Minimum Near white blast
- > Application
 - Fish mouths
 - Overlaps
- Service Conditions
 - Operating temperature
 - Soil conditions
- > UV Degradation during storage.

Field Welds- PUR

- Liquid applied
 Polyurethane
- Epoxy modified
- Operating temperature 176 F



- Backfill Materials
 - Select according to coating type
 - Pipeline Research
 Council Interantional
 Catalogue
 - No. L52208 July 2005
 - Smaller particles do less damage
 - Average 20 mm size produce the least amount of holidays

AUCSC(

- Coating Selection
 - Chemical Resistance
 - Carbon Dioxide
 - Hydrogen Sulfide
 - Abrasion Resistance
 - Erosion
 - Impact Resistance
 - Temperature Resistance
 - VOC Requirements
 - Corrosion Under Insulation
 - CUI

- Immersion Exposure
 - Water / Moisture
 - Microbiologically Induced Corrosion (MIC)
 - Planktonic Bacteria
 - Sessile Bacteria
 - Sulfate Reducing
 - Anarobic

Photo: Extensive tuberculation can discolor and contaminate water as well as result in greatly reduced water flow and pressure.

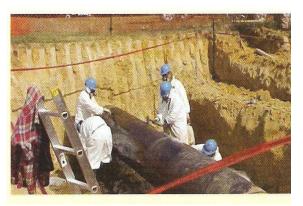
- Immersion Exposure
 - Abrasion Resistance
 - Impact
 - Sludge
 - Chemical Resistance
 - Inhibitors
 - Scavengers
 - Oxygen
 - Sulfide
 - Biocides- MIC Fighters

Vapor Exposure

- Hydrogen Sulfide H2S
 - Concrete and steel
 deterioration

Case History

- Water main 48 in.
 - Pre- stressed Concrete
 Cylinder Pipe PCCP
 - 25 years service
 - Wrapped with High strength reinforcement wire- externally
 - Coated with cement rich mortar
 - No Cathodic Protection
 - Backfill native soil



Case History

- > Water main 48 in.
 - Failure location
 - 10 ft long
 - Along pipe wall
 - Concrete coating deteriorated and spalled
 - Reinforcement wires broke
 - Exposed steel substrate to soil conditions

Case History

- > Water main 48 in.
 - High sulfate levels
 - Water in soil
 - Corrosion of concrete, steel wires and steel pipe
 - Water pressure exceeded the strength of the deteriorated pipe
 - BURST!!

Coating Maintenance Program

- 1. Identify the service conditions
- 2. Coating selection
- 3. Coating specification
- 4. Identify inaccessible areas
- 5. Contractor capabilities
- 6. Coating inspection
- 7. Pre- job meeting
- 8. Teamwork- communication
- 9. Document all phases
- 10. Monitor performance after installation

