Cathodic Protection Measurement Basics

Michael J. Placzek, P.E. Senior Engineer Ark Engineering and Field Services

CP Measurements

Pipe-To-Soil Potentials
CP Current Flow
Resistance
Rectifier Readings

Voltmeter

- Digital, Analog, Computerized
 High Input Impedance
 Rugged
 Lead Wires
 Tight Connections
 Secure To Structure
 - Low Resistance As Possible

 Reference Electrode Types Copper-Copper Sulfate (Most Common) Silver-Silver Chloride (Offshore – Salt Water) Zinc Metal (Rough Conditions) Lead-Lead Chloride (Lead Sheathed Cables) Calomel (Hg-HgCl₂) (Laboratory Use) Hydrogen Cell (Laboratory Use)

Pipe-To-Soil Potentials To Maintain Criteria of SP-0169 (-) 0.850 V ■ Cu-CuSO₄ (-) 0.733 V • Ag-AgCl (Sat KCl) {4.6M} • Ag-AgCl (KCl @ 3.5M) (-) 0.739 V Ag-AgCl (KCl @ 1.0M) (-) 0.756 V (-) 0.784 V Ag-AgCl (Seawater) (+) 0.228 V • Zinc Metal Be Very Careful With Ag-AgCl References. The KCI Concentrations Shift the Potential

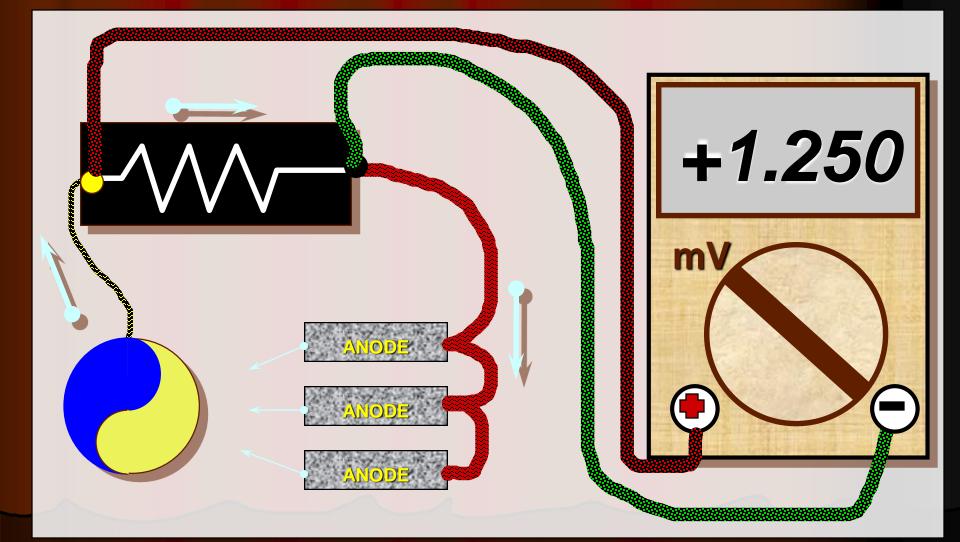
 Cu-CuSO₄ Reference Electrode Temperature Sensitive Copper-Copper Sulfate Ref: 0.5 mV per °F Shift Positive When Colder Contaminant Free Clean Bar and Tip Clear Solution Saturated Solution Distilled Water with Blue Crystals Left Over

Position

 Directly Over Structure Closer The Better But Don't Touch Structure Good Electrolyte Contact Tip Contact to Ground Thick Layers of Crushed Rock • Watch out for Unknowns like: Geoplastic sheets under stone Asphalt layers under concrete pavement (old roads) Paved Over Trolley Tracks (Old Cities)

Sign Convention

Voltmeter (-) Lug	Voltmeter (+) Lug	Sign Convention
Structure	Half Cell	0.850
Half Cell	Structure	(-) 0.850


CP Current Flow

 Direct Readings Inconvenient Slow Dangerous Meter in Series with Circuit Off Too Long Sway Readings Shunt Readings Accurate and Faster Voltmeter Across Known Resistance

CP Current Flow

 Shunt Readings Rated in Ohms 0.001 Ohm: **1 mV = 1 Amp 25 Amp Max** 1 mV = 0.1 Amp 8 Amp Max 0.01 Ohm: 0.1 Ohm: 1 mV = 0.01 Amp 2 Amp Max Shunt Readings By Proportion 50 mV = 50 Amps1 mV = 1 Amp50 mV = 100 Amps1 mV = 2 Amps100 mV = 100 Amps1 mV = 1 Amp50 mV = 60 Amp1 mV = 1.2 Amps

CP Current Flow

Resistance

 Direct Readings Isolate Circuit Turn Off Power Calculated Known V & Known I • Calculate: R = V / IOther Method B3 Series Meter

Rectifier Readings

- AC Input
 - Voltage at Disconnect or Behind Breaker
 - Current by Clamp-On Ammeter
 - Power = (3600 x Kh x N) / T
- AC Throughput
 - Voltage Across Main Lugs of Taps
- DC Output
 - Voltage Across the Output Lugs
 - Current: Voltage Across the Shunt
- Efficiency
 - Power Out / Power In