Fundamentals of Corrosion Mathematics and Electricity

Richard Row, Corrpro

Appalachian Underground Corrosion Short Course

Rules

- Set cell phones to silent operation
- If you get a call, feel free to walk out, and walk back in when you're done
- If you have a question, leave your hand up for about 10 seconds, then use your voice

Disclaimers

- We will be concentrating on some fundamental mathematical and electrical concepts
- Math is like any other skill IT REQUIRES PRACTICE
- I can introduce the information, but you "learn" it by attempting the problems (and struggling) all by yourself.
- This is the "fundamentals" course.

Agenda

- <u>Units</u>
- circuit theory
- Ohms Law
- series and parallel circuit theory
- Evening session (7:00) do it again

More about "units" than you thought possible

- Introduce "conversion factors" in order to change from one unit system to another.
- Miles to feet
- Tons to pounds
- Years to days
- Millivolts to volts
- Amps to milliamps

Mathematical Concept #1

• ANY number times "1" is always the same number You can keep multiplying the number by "one" with no change

EXAMPLE
5 * 1 = 5
23 * 1 = 23
142 * 1 = 142

EXAMPLE
5*1*1*1=5
23*1*1*1*1=23

Mathematical Concept #2

- A number divided by itself is equal to "1"
- There are some cases where this is not true, but you don't need to worry about it.

EXAMPLES

 $\frac{5}{5} = 1$

 $\frac{23}{23} = 1$

142

142

Concept #2 - elaborated

- I introduced the second concept using pure numbers – 5, 23, 142
- Let's use distance instead of pure numbers.

- If I run 5280 feet.
- And "you" run 1 mile.
- Who runs farther?
- Same distance.
- 1 mile = 5280 feet
- Then:

1*mile* 5,280 feet

Adding "UNITS" makes a difference

 $\frac{1}{5280} = 0.0001894$

$$\frac{1}{2000} = 0.0005$$

$$\frac{1mile}{5280\,feet} = 1$$

 $\frac{1ton}{2000lbs} = 1$

 $\frac{1}{24} = 0.0416$

 $\frac{1 day}{24 hours} = 1$

Combine concepts 1 and 2 to convert units

• Concept 2 -
$$\frac{23}{23} = 1$$
 $\frac{1mile}{5280 feet} = 1$
• Concept 1 - 5 * 1 = 5
• How many miles are in 24,362 feet?
• 24,362 feet * $\frac{1 mile}{5,280 feet} = 4.614$ miles

Setting up the equation

- You want the unit you HAVE on the bottom of the conversion factor
- You want the unit you NEED on the top of the conversion factor

• 24,362 feet *
$$\frac{1 \text{ mile}}{5,280 \text{ feet}}$$
 = 4.614 miles

 When you multiply – the same units on top and bottom cancel, and you're left with the unit you need

• 24,362 feet * $\frac{1 \text{ mile}}{5,280 \text{ feet}}$ = 4.614 miles

• Cancelling only works when multiplying fractions

•
$$\frac{15}{690} = \frac{10+5}{10+680} = \frac{5}{680} = \frac{1}{136}$$
 NOT VALID

Examples

• Convert 8.35 miles to feet

• 8.35 miles *
$$\frac{5,280 \ feet}{1 \ mile}$$
 = 44,088 feet

• Convert 3.16 tons to lbs

• 3.16 tons *
$$\frac{2,000 \ lbs}{1 \ ton}$$
 = 6,320 lbs

• Convert 3.6 years to days
• 3.6 years *
$$\frac{365.25 \text{ days}}{1 \text{ year}} = 1,314.9 \text{ days}$$

Let's take the examples further

- Convert 8.35 miles to "millimeters"
- 8.35 miles * $\frac{5,280 \text{ fest}}{1 \text{ mile}}$ * $\frac{12 \text{ inches}}{1 \text{ foot}}$ * $\frac{25.4 \text{ mm}}{1 \text{ inch}}$ = 13,438,022 mm
- I don't have to remember how many mm are in a mile
- I used concept #1 to string conversion factors together
- I only need to remember how many mm are in one inch
- Convert 3.16 tons to milligrams

• 3.16 tons * $\frac{2000 \text{ lbs}}{1 \text{ ton}}$ * $\frac{454 \text{ gms}}{1 \text{ lb}}$ * $\frac{1,000 \text{ mg}}{1 \text{ gm}}$ = 2,869,280,000 mg

What if you invert the conversion factor?

• 8.35 miles *
$$\frac{5,280 \ feet}{1 \ mile}$$
 = 44,088 feet (correct)

• 8.35 miles *
$$\frac{1 \text{ mile}}{5,280 \text{ feet}} = 0.00158 \frac{\text{mile}-\text{mile}}{\text{foot}}$$

- Two clues you got the conversion factor wrong
 - One you know that 8 miles is more than 1/1000th of a foot
 - Two very strange unit mile²/foot (valid but strange)
 - the units did not cancel

Electrical Units

- Volt an honorary unit for Count Alessandro Volta
 - Volta invented the modern battery and discovered methane

• 1 Volt =
$$\frac{1 kg - m}{Coloumb - s^2}$$

 Ampere – an honorary unit for French physicist Andre Ampere

• 1 Amp =
$$\frac{1 Coloumb}{s}$$

Converting electrical units

 In the cathodic protection field electrical unit conversions are typically limited to: Amps to milliamps / milliamps to amps and

Volts to millivolts / millivolts to volts

• The factors look like this:

Volt and Amp Conversion Examples

$$630mA * \frac{1A}{1000mA} = 0.63A$$

$$-823mA*\frac{1A}{1000mA} = -0.823A$$

$$-1.71A * \frac{1000mA}{1A} = -1710mA$$

$$2.5A * \frac{1000mA}{1A} = 2500mA$$

$$0.542 V * \frac{1,000 mV}{1 V} = 542 mV$$

$$2.81 V * \frac{1,000 mV}{1 V} = 2,810 mV$$

$$0.79 \ mV \ * \ \frac{1 \ V}{1,000 \ mV} = 0.00079 V$$

$$39.6 \ mV \ * \ \frac{1 \ V}{1,000 \ mV} = 0.0396 \ V$$

A Fluid Circuit

Measurement in a fluid circuit

- Pressure can be measured without interrupting the flow.
 - Pressure gauge in a tap
- Flow rate is measured by making all the fluid go through a meter. Flow is diverted
 - Ultrasonic meters do not divert flow

An Electrical Circuit

Voltage Source – current flows out of the "+" side

Current is the same at all points Voltage changes throughout circuit

Resistor – described in "ohms"

Current flowing clockwise in this illustration – denoted by "i"

Measurement in an electrical circuit

- Voltage can be measured without interrupting the flow.
 - Similar to pressure in a fluid circuit
- Current is measured by making all the current flow through a meter. Flow is diverted.

Equivalence – Fluid to Electricity

PRESSURE (psi) FLOW (gpm or cfs) POTENTIAL (volts) CURRENT (amps)

Equivalence

- FLUIDS
- Pressure
 - Pounds per square inch
 - Measure without diverting flow

- ELECTRICITY
- Potential
 - Volts
 - Measured without diverting current

- Flow
 - Gallons per minute
 - Measured by diverting flow
- Current
 - Amps (coulombs / sec)
 - Measured by diverting the current

A simple circuit

- 12 V car battery attached to a light bulb
- Current flows out of the (+) terminal and returns to the (-) terminal

Measuring electrical potential

- Measuring potential, no current goes through the meter
- High internal resistance meter
- Meter is separate from current flow

Measuring electrical current

4°

Ε

- In order to measure current, all current goes through the meter.
- Meter becomes part of the circuit
- Current meters have very low internal resistance

R

Circuits around the house

- A GFCI (in outlets around moisture) operates (and protects you) on the principal that "current is the same at all points in a circuit".
- A normal breaker like in your main breaker box opens (breaks the circuit) when TOO MUCH current is flowing.
- A ground fault circuit interrupter opens when current on one side of the circuit is different from the current on the other side.

Ground Fault Circuit Interrupter

Ohm's Law

A potential of 1 volt across a resistance of 1 ohm causes 1 amp of current to flow

Ohm's Law

- Using the triangle.
- Cover the variable that you need to find.
- The "known" variables will be in the configuration you need.

Ε

R

- Need to know "I"?
- Cover the I and you're left with $\frac{E}{R}$.

• Therefore I =
$$\frac{E}{R}$$

Units and Ohm's Law

- ALWAYS convert units to Amps, volts, and Ohms.
- Do NOT use milliamps, millivolts, or kilo-ohms.

If the voltage (E) is 10.5
 Volts and the resistance (R) is 5 ohms, how much current (I) is flowing?

- I = E/R = E \div R
- I = 10.5V ÷ 50hms
- I = 2.1 Amps

- If the voltage (E) is 1.6 Volts and the current (I) is 2 amps, what is the resistance in the circuit?
- R = E ÷ I
- R = 1.6V ÷ 2 amps
- R = 0.8 ohms

- If the current (I) is 100 mA and the resistance (R) is 1.5 ohms, what is the voltage across the resistor?
- E = I*R
- I = 100 mA = 0.1A
- R = 1.5 ohms
- E = 0.1 * 1.5
- E = 0.15V

Ohm's Law Example 3 – mistake included

- If the current (I) is 100 mA and the resistance (R) is 1.5 ohms, what is the voltage across the resistor?
- $E = I^*R$
- I = 100 mA
- R = 1.5 ohms
- E = 100 * 1.5

• E = 150 V (not 0.15V)

- If the current (I) is 2.5 mA and the voltage (E) is 2.5 volts, what is the resistance of the circuit?
- R = E ÷ I
- I = 2.5 mA = 0.0025A
- E = 2.5 volts
- R = 2.5 ÷ .0025
- R = 1000 ohms

Example 4 – mistake included

- If the current (I) is 2.5 mA and the voltage (E) is 2.5 volts, what is the resistance of the circuit?
- R = E ÷ I
- I = 2.5 mA
- E = 2.5 volts
- R = 2.5 ÷ 2.5
- R = 1 ohm (wrong)

- If the current (I) is 20 A and the resistance (R) is 2 ohms, what is the voltage across the resistor?
- E = I*R
- I = 20 A
- R = 2 ohms
- E = 20 * 2
- E = 40 V

- If the voltage (E) is 12
 Volts and the
 resistance (R) is 4
 ohms, how much
 current (I in
 milliamps) is flowing?
- I = E ÷ R
- I = 12V ÷ 4 ohms
- I = 3 Amps
- I = 3 A * (1000mA/1A)
- I = 3000 mA

Electric Circuit Analysis

• Resistors in a circuit can be connected in series

- Current is the same through all resistors
- Voltage drop across different resistances is different
- Resistors in a circuit can be connected in parallel
 - Current through different resistors is different
 - Voltage drop across all resistors is the same

Fluid Circuit with "resistance" in series

Resistors in Series

- All the current flows through all the resistors
- Depending on the resistance values, the voltage drop across each R is different.
- What is the equiv R?

Resistors in Series what is the equivalent resistance?

Series Circuit Example

V

2Ω

5Ω

10Ω

 $Req = 2 \Omega + 5 \Omega + 10 \Omega$

 $\text{Req} = 17 \Omega$

The equivalent resistance is HIGHER than the highest individual resistor.

Fluid circuit with "resistance" in parallel

Resistors in Parallel

- Different currents flow through the resistors
- The voltage drop across each R is the same.
- What is the equiv R?

$$i_{Tot} = i_1 + i_2 + i_3$$

Resistors in Parallel

 $I_{total} = I_1 + I_2 + I_3 \quad I = E/R$ $E/R_{eq} = E/R_1 + E/R_2 + E/R_3$ $1/R_{eq} = 1/R_1 + 1/R_2 + 1/R_3$

Numerical Example of Parallel Resistors

$$\frac{1}{\text{Re }q} = \frac{1}{2^{\Omega}} + \frac{1}{5^{\Omega}} + \frac{1}{10^{\Omega}}$$

$$\frac{1}{Re q} = 0.5 \ \Omega^{-1} + 0.2 \ \Omega^{-1} + 0.1 \ \Omega^{-1}$$

$$= 0.8 \ \Omega^{-1}$$

$$Re q = 1/0.8 = 1.25 \ \Omega$$

The Equivalent resistance is LOWER than the lowest resistance.

End of Presentation

