Day 1 Review

Heather Groll

Appalachian Underground Corrosion Short Course

Mathematics Reminder!

- Any number times itself is always equal to itself!
 - 1 x 18 = 18
 - 235 x 1 = 235
 - $64 \times 1 = 64$
 - 73526 x 1 = 73526
 - 53 x1 x 1 x 1 x 1 = 53
 - 1 x 348 x 1 x 1 x 1 = 348

• A number divided by itself is "1"

UNITS IS EVERYTHING!

- 5280 Feet = 1 Mile
- 1 Dollar = 20 Nickels
- 1 Volt = 1000 millivolts
- 24 Hours = 1 Day

 $\frac{1 \text{ mile}}{5280 \text{ feet}} = 1$ $\frac{1 \text{ dollar}}{1 \text{ dollar}} = 1$

20 nickles

 $\frac{1 \, Volt}{1000 \, Millivolts} = 1$

How to Convert

- If we have 15,000 feet that we want to convert to miles;
- We must convert the units

 $15000 \text{ mile x} \frac{1 \text{ mile}}{5280 \text{ feet}} = \frac{2.84 \text{ feet} - \text{mile}}{\text{feet}}$

Answer: 15000 feet = 2.84 miles

How to Convert

- If we have 8.62 miles that we want to convert to feet;
- We must convert the units

 $8.62 \text{ mile x} \frac{5280 \text{ feet}}{1 \text{ mile}} = \frac{45,513.6 \text{ mile} - \text{feet}}{\text{mile}}$

Answer: 8.62 *miles* = 45,513.6 *feet*

How to Convert

- If we have Volts to Millivolts [1 Volt = 1000 mV]
- We must convert the units; .084 Volts to millivolts

$$\frac{1 \, Volt}{1000 \, millivolts} = 1 \qquad \frac{1000 \, millivolts}{1 \, Volts} = 1$$
$$.084 \, Volts \, x \, \frac{1000 \, mV}{1 \, Volt} = \frac{840 \, Volt - mV}{Volt}$$

Answer: .084 *Volt* = 840 *mV*

Moving the Decimal Point for conversions

 $\frac{1 \, Volt}{1000 \, millivolts} = 1$

Unit #1	=	Unit #2
2.856 mV	=	0.002856 V
0.0056 mV	=	0.0000056 V
435.05 mV	=	0.43505 V
8.37 mV	=	0.00837 V
0.06 mV	=	0.00006 V
84.6 V	=	84600 mV
0.00054 V	=	0.54 mV
0.15 V	=	150 mV
679163.2 V	=	679163200 mV
462 mA	=	0.462 A
5.5 mA	=	0.0055 A
4.9823 A	=	4982.3 mA
0.000005 A	=	0.005 mA

 $\frac{1000 \text{ millivolts}}{1 \text{ Volts}} = 1$

Electricity Symbols

 Voltage source- Electrical Pressure, usually represented by an "E" or "V"

Ε

- Current flowing Flow of Electrons, usually represented by an "I"
- Resistor- Resistance to the flow of electrons, usually represented by an "R"

Ohm's Law

A potential of 1 volt across a resistance of 1 ohm causes 1 amp of current to flow

Volts = 12 V Resistance = 3.5 Ω Current = ? A $\frac{12 V}{35 \Omega}$ = 3.42 A	V I R $Volts = 6 V$ $Resistance = ? \Omega$ $Current = 1.5 A$ $\frac{6 V}{1.5 A} = 4 \Omega$	Volts = ? V Resistance = 5 Ω Current = .4 A .4 A × 5 Ω = 2 V
Volts = 2 mV Resistance = .04 Ω Current = ? A $\frac{2 mV}{.04 \Omega} = .05 A$ $\frac{.002 V}{.04\Omega} = .05 A$	Volts = 2 V Resistance = ? Ω Current = 54 mA $\frac{2 V}{54 mA} = 37.04 \Omega$ $\frac{2 V}{.054 A} = 37.04 \Omega$	Volts = ? mV Resistance = 11 Ω Current = 5 mA 11 Ω × 5 mA = 55 mV

- Current Total $(I_T) = I_1 + I_2 + I_3$ *Kirchoff's Law
- Resistance Total $\left(\frac{1}{R_T}\right) = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ or $\frac{R_1 x R_2}{R_1 + R_2}$

• Voltage Total (
$$V_T$$
)= $V_1 = V_2 = V_3$

Pipeline Locating

- An electrical device used to locate underground metallic structures.
- Modes of Operation include:
 - Inductive (indirect)
 - Conductive (direct)
 - Inductive Clamp
 - Passive
- Choosing the Right Tool; <u>ALWAYS FOLLOW MANUFACTURERS'</u> <u>INSTRUCTIONS</u>!
 - Split box
 - Single frequency electronic locator
 - Multi-Frequency electronic locator
 - Valve Box Locator
 - Ferromagnetic Locator
 - Ground Penetrating Radar

If in Doubt- Don't Mark it out and Hand Dig

What is Corrosion?

Refining Process

Steel

THE <u>DETERIORATION</u> OF A MATERIAL, DUE TO A <u>REACTION WITH</u> ITS ENVIRONMENT

Corrosion Cell

Corrosion cannot be present without these **four** things;

ELECTROLYTE ANODE CATHODE METALLIC PATH

Take one of the four away and corrosion will be mitigated.

Galvanic Series:

Active (More Electro-Negative)

- High Potential Magnesium (-1.75 v)
- Magnesium Alloy (-1.5 v)
- Zinc (-1.1 v)
- Aluminum Alloys (-1.05 v)
- Clean Carbon Steel (-0.5 to -0.8 v)
- Rusted Carbon Steel (-0.2 to -0.8 v)
- Cast/Ductile Steel (-0.5 v)
- Lead (-0.5 v)
- Steel in Concrete (-0.2 v)
- Copper (-0.2 v)
- High Silicon Iron (-0.2 v)
- Gold (+0.2V)
- Graphite, Carbon (+0.3v)

Noble (More Electro-Positive)

* Potentials with respect to saturated Cu-CuSO₄ Electrode

Cathodic Protection

Galvanic Anode Cathodic Protection

And the second and a standard and a state of the second of the second state of the second state of the second s

Advantages:

- Seldom cause stray current interference
- Relatively low installation cost
- Self-Powered
- Low Maintenance

Disadvantages:

- Limited on current output- doesn't work in high-resistivity soils
- Not practical for bare or poorly coated pipelines
- Relatively high consumption rate

Sacrificial Anodes

Zinc, Aluminum, and Magnesium

Impressed Current Cathodic Protection

Advantages

- Capable of protecting large structures
- Capable of protecting structures which require greater magnitudes of current (Higher Driving Voltage)
- May be more economical than sacrificial anode systems
- Lower consumption rates than galvanic anodes
- Better in High Soil Resistivity areas

Disadvantages

- Increased maintenance requirements
- Tendency for higher operating costs
- Possibility of contributing to stray current interference on neighboring structures
- Electric power may be needed

Impressed Current Anodes

- Graphite Anode
- High Silicon Cast Iron
- Mixed Metal Oxide Anode
- Platinum
- Scrap Steel Abandoned Structures
- Aluminum
- Lead Silver
- Magnetite

