

Corrosion Cells In Action

Chapter 1 Appalachian Underground Corrosion Short Course

Introduction

Review of Basic Concepts
 The Chemistry of Corrosion
 Electromotive/Galvanic Series
 Galvanic Corrosion Examples
 Corrosion Cells in Action

Why are we Herep

Corrosion Costs
 440 Billion Annually
 Why?

Four Essential Elements of Corrosion Cell
 Anode
 Cathode
 Conductive Electrolyte

 In contact with both anode and cathode
 Metallic Conductor

- Connecting anode and cathode

Anode

Discharges lons (Oxidation Reactions)

- Location of Current Discharge
- Corrodes

Cathode

Collects Ions (Reduction Reactions)

Location of Current Pickup

Protected

Anodic Reaction - Corrosion Fe \Rightarrow Fe⁺⁺ + 2e⁻ = Oxidation

CORROSION IN ACTION FIGURE 1

Combined Reactions

 $Fe + 2H_2O \longrightarrow Fe^{++} + 2H^+ + 2(OH)^-$

$Fe^{++} + 2(OH)^{-} \longrightarrow Fe(OH)_{2}$

Ferrous Hydroxide

Dry Cell Example

Electromotive Force

METAL	VOLTS	
Magnesium	-2.37	
Aluminum	-1.66	
Zinc	-0.76	
Iron	-0.44	
Tin	-0.14	
Lead	-0.13	
Hydrogen	0.00	
Copper	+0.34 to +0.52	
Silver	+0.80	
Platinum	+1.20	
Gold	+1.50 to +1.68	
MEASURE WITH RESPECT TO HYDROGEN REFERENCE ELECTRODE		

Potential Measurements

Anode Reaction:

 $M \longrightarrow M^{++} + 2e^{-}$

Cathode Reaction:

 $O_2 + 2H_2O + 4e \rightarrow 4OH^2$

Overall Reaction:

$$2M + O_2 + 2H_2O \longrightarrow 2M^{++} + 4OH$$

Potential Measurements

Cathodic

Platinum Gold Noble (+) Graphite Titanium Silver Chlorimet 3 (62 Ni, 18 Cr, 18 Mo) Hastelloy C (62 Ni, 17 Cr, 13 Mo) 18-8 Mo stainless steel (passive) 18-8 stainless steel (passive) Chromium stainless steel 11-30% Cr (passive) Inconel (passive) (80 Ni, 13 Cr, 7 Fe) Nickel (passive) Silver Solder Monel (70 Ni, 30 Cu) Cupronickels (60-90 Cu, 40-10 Ni) Bronzes (Cu-Sm) Copper Brasses (Cu-Zn) Chlorimet 2 (66 Ni, 32 Mo, 1 Fe) Hastelloy B (60 Ni, 30 Mo, 6 Fe, 1 Mn) Inconel (active) Nickel (active) Tin Lead Lead-tin solders 18-8 Mo stainless steel (active) 18-8 stainless steel (active) Ni-Resist (high Ni cast iron) Chromium stainless steel, 13% Cr (active) Cast iron Steel or iron 2024 aluminum (4.5 Cu, 1.5 Mg, 0.5 Mn) Active (-) Cadmium Commercially pure aluminum (1100) Zinc Magnesium and magnesium alloys

Practical Galvanic Series in Seawater

Anodic

	METAL.	VOLTS
	Commercially pure magnesium	-1.75
	Magnesium alloy (6% Al, 3% Zn,	
	0.15% Mn)	-1.6
	Zinc	-1.1
	Aluminum alloy (5% Zinc)	-1.05
	Commercially pure aluminum	-0.8
	Mild Steel (clean and shiny)	-0.5 to -0.8
	Mild Steel (rusted)	-0.2 to -0.5
	Cast Iron (not graphitized)	-0.5
	Lead	-0.5
	Mild Steel in Concrete	-0.2
	Copper, brass, bronze	-0.2
	High Silicon Cast Iron	-0.2
	Mill Scale on Steel	-0.2
C	Carbon, Graphite, Coke	+0.3

Practical Galvanic Series in Soil

Cathodic

Anodic

Galvanic Corrosion Examples

- Dissimilar Metal Couple
- Non-Homogeneous Soils
- Differential Aeration/Chemistry
- Dissimilar Surface Conditions
- Stray Current
- Effect of Stress

Dissimilar Metal Couple

Non-Homogeneous Soil

Differential Aeration

Differential Aeration

Dissimilar Surface Conditions

Dissimilar Surface Conditions

Stray Current

Effect of Stress

Cathodic Protection

Corrosion Cells

- Developed by Col George. C. Cox
- ⇒ How do they Work?
 - Differentiate Anodic and Cathodic areas with indicating solutions
 - Anodic Areas Potassium Ferricyanide
 - Turns Bluish Green in the presence of Fe⁺⁺
 - Cathodic Areas Phenolphthalein
 - Turns bright pink or crimson as pH increases (OH⁻)

Corrosion Cells

On-Screen projection to show effects

Porous Sponge

Anodic Component

Connecting Wire

Cathodic Component

Acrylic Cell