CONDUCTING CLOSE INTERVAL POTENTIAL SURVEYS

Presented by: Dean Parsons

5/16/2018

CONDUCTING CLOSE INTERVAL POTENTIAL SURVEYS

- DEFINITION OF CLOSE INTERVAL SURVEYS (CIS)
- REASONS FOR CONDUCTING CIS
- TYPES OF CIS
- PRE-SURVEY CONSIDERATIONS
- DATA COLLECTION CONSIDERATIONS
- POST SURVEY PROCESSING AND ANALYSIS
- CONCLUSIONS

DEFINITION OF CLOSE INTERVAL SURVEY

NACE DEFINITION – SP0207-2007

 A potential survey performed on a buried or submerged metallic pipeline, in order to obtain valid DC structure-to-electrolyte potential measurements at a regular interval sufficiently small to permit a detailed assessment.

PHMSA MANDATES

- §192.455 External corrosion control: Buried or submerged pipelines installed after July 31, 1971.
- §192.465 External corrosion control: Monitoring.

REASONS FOR CONDUCTING CLOSE INTERVAL SURVEYS

COLLECT BASELINE PROFILE DATA TESTING FOR ADEQUATE LEVELS OF CATHODIC PROTECTION OVER ENTIRE LENGTH OF STRUCTURE TROUBLESHOOTING KNOWN CP DEFICIENCIES INTERFERENCE TESTING CURRENT PICK-UP / DISCHARGE POINTS DETERMINING SPHERE OF INFLUENCE IDENTIFING SUBSTANTIAL COATING HOLIDAYS/DAMAGE

Schematic Of A Close Interval Survey

TYPES OF CLOSE INTERVAL SURVEYS

- NATIVE SURVEY
- CURRENT APPLIED OR ON SURVEY
- ON/INTERRUPTED SURVEY
- DEPOLARIZED SURVEY

NATIVE SURVEY

- A Native pipe-to-soil survey is used to establish a base-line profile of the pipeline system, before designed CP is ever applied
- Can help to determine if foreign or interference currents are present before CP is applied.
- Often used in conjunction with On/Interrupted surveys to establish 100mv polarization shift.
- Can create future cost savings and minimize risks associated with de-energizing facilities to obtain depolarized potentials.

NATIVE SURVEY W/FOREIGN CURRENT

CURRENT APPLIED OR "ON" SURVEY

- The On/only survey is normally conducted on legacy structures that have magnesium anodes directly attached to the structure, where it's not practical to obtain IR Free potentials.
- · An on survey does not take into account "IR drop".
- Sometimes used in conjunction with IR drop coupons to confirm levels of cathodic protection.
- These surveys are performed to help verify cathodic protection levels and coating efficiency.

Current Applied "On" Survey

ON/INTERRUPTED SURVEY

- This is the most common type of CIS used on impressed current systems and galvanic systems where current sources can be interrupted.
- Requires "all" influencing current sources to be interrupted using synchronized current interrupters.
- Instant-off potentials provide an IR free reading of polarized pipe potentials.

On-Interrupted Galvanic Survey

Appalachian Underground Corrosion Short Course

DEPOLARIZED SURVEY

- A depolarized survey is used in conjunction with an On/Interrupted survey to verify 100mV polarization.
- The pipeline must have all influencing sources of current turned off and be allowed to depolarize sufficiently before conducting the survey.
- It is necessary to survey as accurately as possible to the original On/Interrupted survey to be able to overlay potentials.
- The Depolarized Data is then graphed against the On/interrupted data to determine if the 100mV polarization has been achieved.
 - Graph includes calculated line Depolarized Potential + 100mv

Depolarized Survey

Depolarized Survey Graph

PRE-SURVEY CONSIDERATION

- DO YOUR HOMEWORK!!!!
- SPECIFICATIONS:
 - · Payment Schedule and Conditions
 - Job Delays
 - Inclement Weather
 - General Requirements
 - Operator / Contractor
 - Personnel Qualification
 - Safe Work Practices
 - PPE Requirements
 - Daily Safety Meetings (TSM's / JSA's)
 - Right-of Way / Geographical Challenges
 - Nearest Medical Facilities

Paralleling AC Corridors? Safety is Paramount

ROW Mowed or Not?

Pre Survey Consideration

Specifications Cont'd

- Historical Data
 - Type of CP applied
 - Annual Test Point Inspections
 - Bi-monthly Rectifier inspections
 - Previous CIS data
 - Known out of circuit Influence
- Mapping and Alignment Sheets:
 - Test Point / Rectifier location and ID.
 - Tie-in points and Isolation

Facility	AssetNumber	InspectionDate	StructurePS	StructureIRF	CasingPS	ForeignPS	ForeignIRF	Technician	Latitude	Longitude
Pipeline-1	P1-TP10	9/18/2014	-2.672	-1.476	-0.529	,		DLR	39.94716	-80.13893127
Pipeline-1	P1-TP10	7/22/2015	-2.466	-1.089	-0.539			BRS	39.94716	-80.13893127
Pipeline-1	P1-TP10	7/18/2016	-2.423		-0.559			RJS	39.94716	-80.13893127
Pipeline-1	P1-TP11	9/18/2014	-2.235	-1.47	,	-1.314	-1.273	DLR	39.95998	-80.13088989
Pipeline-1	P1-TP11	7/23/2015	-2.228	-1.095		-1.472		BRS	39.95998	-80.13088989
Pipeline-1	P1-TP11	7/21/2016	-2.13			-1.41		RJS	39.95998	-80.13088989
Pipeline-1	P1-TP12	9/18/2014	-2.402	-1.581	L	-1.363		DLR	39.96117	-80.13009644
Pipeline-1	P1-TP12	7/22/2015	-2.162	-1.119		-1.337		BRS	39.96117	-80.13009644
Pipeline-1	P1-TP12	7/21/2016	-2.073			-1.921		RIS	39.96117	-80.13009644
Pineline-1	P1-TP13	9/18/2014	-2 364	-1 539		-1 38	-1 378	DIR	39 96346	-80 12945557
Pipeline-1	P1-TP13	7/23/2015	-2 120	.1 025		-1 380		BRS	39 96346	-80 12945557
Pipeline-1	P1-TP13	7/21/2016	-2 02/			-1 340		RIS	39 96346	-80 12945557
Dipolino 1	D1 TD14	9/18/2014	2.02	1.407	,	2 175		DIR	20.06691	90 12995294
Dipoline 1	P1 T014	7/22/2015	-2.113	-1.407		-2.1/3		DEN	20.06691	-00.12003204
Pipeline-1	P1-1P14	//25/2015	-2.032	-1028		-1.3		c.nd	29.90081	-60.12885284
Pipeline-1	P1-TP14	7/18/2016	-1.933			-1.323		RJS	39.96681	-80.12885284

Pre-Survey Test Point Information

Appalachian Underground Corrosion Short Course

Pre-Survey Influencing Rectifier Information

Facility	AssetNumber	FacilityID	Latitude	Longitude	Inspection Date	Tap Settings	Rectifier Output Volts	RectifierOutput Current	Tech
I donity	Assectioniser	i demegro	Lutituuc	Longitude	inspection bute	Settings	- ound	lound	reen
Pipeline - 1	Pipeline1-RT01	A1	39.96685791	-80.1112442	5/1/2017	B-4	27.69	10.2	RJS
Pipeline - 1	Pipeline1-RT02	WARD	40.0201683	-79.9968338	5/1/2017	D-3	36.18	14.53	RJS
Pipeline - 1	Pipeline1-RT03	THOMPSON	40.03536606	-80.05788422	5/1/2017	C-1	39.66	7.69	RJS
Pipeline - 1	Pipeline1-RT04	HUD M-82	39.90620422	-80.14971161	5/1/2017	C-4	38.33	10.08	RJS
Pipeline - 1	Pipeline1-RT05	M78 - RT 221 RUFF CK	39.94706345	-80.13899994	5/1/2017	B-3	17.68	3.06	RJS
Pipeline - 1	Pipeline1-RT06	PRATT STATION #47	39.912323	-80.12850952	5/1/2017	C-2	27.08	9.47	RJS
Pipeline - 1	Pipeline1-RT07	EDGAR #1 PRATT	39.95070267	-80.12539673	5/1/2017	A-2	4.86	0.61	RJS
Pipeline - 1	Pipeline1-RT08	HAWKINS#1 - H-106	39.94681931	-80.11604309	5/1/2017	A-3	14.55	4.04	RJS
Pipeline - 1	Pipeline1-RT09	CASTILE RUN #1	39.9718895	-80.10402679	5/1/2017	A-3	14.36	3.53	RJS
Pipeline - 1	Pipeline1-RT10	PYLES	39.96728516	-80.10668182	5/1/2017	A-6	17.98	3.65	RJS
Pipeline - 1	Pipeline1-RT11	VRBANIC	39.9522934	-80.07000732	5/1/2017	A-6	23.68	13.63	RJS
Pipeline - 2	Pipeline2-RT01	JEFFERSON H-111	39.92829895	-80.06137085	5/1/2017	A-3	4.86	0.57	RJS
Pipeline - 2	Pipeline2-RT02	REESE - H109	40.03881454	-80.15016937	5/1/2017	B-2	15.2	5.58	RJS
Pipeline - 2	Pipeline2-RT03	JEFFERSON COMP STA	39.90927505	-80.07463074	5/1/2017	B-4	26.08	11.49	RJS
Station - 1	Station1-RT01	IO COMP STATION	39.95553207	-80.13075256	5/1/2017	A-4	5.09	5.18	RJS
Station - 2	Station2-RT02	JUPITER CS 2	39.96892929	-80.11095428	5/1/2017	B-4	15.06	12.29	RJS
Foreign Operator - 1		MOWL RD	40.11929	-80.18359	4/10/2017	A-2	13.14	10.4	

Pre-Survey Corrosion Asset Mapping

PRE-SURVEY CONSIDERATION

Specifications Cont'd

- Instrumentation and Equipment
 - Volt Meter / Data Loggers
 - High Input Resistance 10 Mega-ohm or greater
 - Reference Electrode
 - Type Saturated Copper/Copper Sulfate
 - Reference Cell Balance/Calibration Intervals
 - Pipeline Location
 - Measurement Techniques GPS / Slope Chain
 - Depth of Cover
 - Survey Wire
 - Type and Gauge

Close Interval Survey Equipment

SURVEY CONSIDERATON

- Survey Specifications
 - Interruption
 - Cycle Time On: Off ratio
 - Interruption Starting Position "On" or "Off"
 - GPS Synchronized
 - Pipe-to-Electrolyte Potentials
 - Potential Measurement Interval and Range
 - Survey Lead Connections (-)Ref. Electrode (+)Structure
 - Field Data Collection
 - Environmental Conditions Heat / Cold / Foliage.
 - Electrolyte Contacts Concrete/Asphalt/Casings/Bores
 - Far Ground / Structure IR Drop / Near Ground Potentials
 - Foreign / Casing / Points of Isolation / AC Potentials

SURVEY CONSIDERATON

Survey Specifications cont'd:

- Data Integrity
 - Survey Equipment Continuity
 - Reference Electrode Balance/Calibration
 - Proper Contact to Structure
 - Reconnection Points
 - Measuring and Stationing
 - GPS / Slope Chain / Wire Counters
 - Permanent Landmarks / Appurtenance
 - Wave Prints
 - · Predetermined specified intervals / Survey Irregularities
 - Used to help filter "spiking" and identify Interrupter Sync Issues.
 - Continuous Survey Data Logging

GPS SYNC'D CIS WAVEPRINT

Stationary Logger Graph

Post Survey Considerations

- · Final Reports:
 - Operator Qualification documentation
 - Depth of Cover and areas of exposure
 - · Listing of all Rectifiers, Bonds, and Anodes interrupted during Survey
 - Rectifier Output and Tap settings "As Found" and "As Left
 - List of all permanent Test Stations with all data Information required
 - AC potentials, Far Ground, Structure IR, Near Ground
 - · Foreign, Casing, Isolation Point Potentials
 - Damaged (No Contact)
 - Summary of areas not meeting the CP criteria being evaluated
 - Potentials < -.850V "On" current applied surveys
 - Potentials < -.850V IR Free "Instant Off" Interrupted
 - Areas not meeting 100mv Polarization with respect to Native or Depolarized Surveys.
 - · Excessive negative Potentials per specification

Post Survey Considerations

Final Report Cont'd:

- Data Graphs
 - Each type of potential easily distinguished.
 - Usually Color coding
 - · Legend may Include:
 - · Client / Operator Name, Survey Date
 - Structure or Asset name
 - Interruption Cycle times
 - Surveyor Name
 - Survey measurement: GPS'd Stationing
 - Test Stations and Above Ground Appurtenances
 - Areas of Skip Potentials Public Roads, Casings, Bores, Exposures
 - · Points of Intersections / Geographical Features

Post Survey Considerations

- · Final Report Cont'd
 - · Wave Prints
 - Continuous Logging
 - Deliverables:
 - Bounded Reports
 - Electronic Reports
 - File Formatting: (.pdf, .xls, .svy)
- Remedial Recommendations
 - Cathodic Protection Adjustments
 - Criterion change considerations
 - Additional Survey requirements ACVG / DCVG
 - Confirmation / Repair Digs

Desired Results "Impressed Current" CIS Graph

Desired Result "Galvanic Protection" CIS Graph

SUMMARY

- A CIS PROVIDES A CONTINUOUS PIPE-TO-SOIL POTENTIAL PROFILE OF THE PIPELINE
- DETERMINES EFFECTIVENESS OF THE CATHODIC PROTECTION BEING APPLIED TO SYSTEM.
- A POWERFUL ANALYSIS TOOL
- DATA MUST BE TECHNICALLY ACCURATE TO ENSURE PIPELINE SAFETY.
- GARBAGE "IN" = GARBAGE "OUT"

Like a Walk in the Park

5/21/2018

•QUESTIONS?

