Pipeline Coating Failures
Corrosion Protection

Subsoil Exposure

- Coatings - Designed to protect the pipe surface from its external environment.
 - Adhesion
 - Thickness
 - Hardness
 - Dielectric Strength
Corrosion Protection

- Cathodic Protection - Designed to protect the pipe from corrosion should the coating be damaged or become disbonded from the pipe.

- Electrical current
 - -850 to 800 mv potential range (Coatings / CP)
 - Temperature
 - Soil resistivity
The “Supply Chain” is the sequential efforts of Engineers, Suppliers, Services and Installers. Each party has a well defined role to accomplish specific tasks that will result in a completed pipeline project.
Supply Chain

- Project Sequence
 - Design
 - Manufacture
 - Surface Preparation
 - Coating
 - Handling
 - Storage
 - Transportation
 - Construction
Design

- Atmospheric Exposure
 - UV Degradation
 - Abrasion
 - Environmental
 - Airborne Contaminants
 - Structural Supports
 - Operating Temperatures
Design

- Subsoil Exposure
 - Operating Temperature
 - Cathodic Protection
 - Pipeline Insulation
 - pH / Moisture
 - Abrasion / Impact Resistance
 - Backfill Composition
 - Chemical Resistance
Design

- Immersion / Marine
 - Operating Temperature
 - Cathodic Protection
 - Water Resistance
 - Weight Coating
 - Resistance to Water
 - Fresh
 - Salt
 - Brackish
Design

- Cathodic Protection
 - Cathodic Disbondment
Cathodic Protection

- CP Shielding
 - Occurs after coating failure
 - Prevents CP current access to the steel
 - Limited to buried pipelines onshore.
Design

- Fasteners Field Joints
 - Nuts & Bolts
 - Crevices
 - Welds
Manufacture

- Fabrication
 - Rolling defects
 - Weld Spatter
 - Sharp edges
 - Surface defects
Manufacture

- **Material Type**
 - Carbon Steel
 - Galvanized Steel
 - Aluminum
 - Copper
 - Ductile iron
 - Concrete
Surface Preparation

- Decontamination
Surface Preparation

- Surface Cleanliness
Surface Preparation

- Abrading - Abrasive
 - Surface Profile
 - Anchor Pattern
 - Mechanical Tooth
Surface Preparation

- Abrading- Abrasive
 - Surface Profile
 - Anchor Pattern
 - Mechanical Tooth
Surface Preparation

➢ Quality Control
 • Environmental Conditions
 • Air temperature
 • Relative humidity
 • Dew point
Surface Preparation

- Quality Control
 - Surface Conditions
 - Contamination
 - Weld defects
 - Profile
 - Too deep
 - Too shallow
Surface Preparation

- Quality Control
 - Adhesion
Coating

- Coal Tar Enamel
 - Water resistant
 - Moisture resistant
 - Chemical resistant
 - Acid
 - Alkali
 - Petroleum products
 - Surface tolerant
 - Bacteria resistant
 - Dielectric strength
Coating

➢ Coal Tar Enamel
 - Coating System
 • Coal Tar Enamel
 • Glass Reinforced
 • Inner Wrap
 • Outer Wrap-Saturated
 • Kraft Paper Protection
 • UV Rays
Coating

Curing

- Function of time and temperature
- Uncured coatings will absorb moisture
 - Amines- Epoxies
 - Isocyanates- PUR
- FBE- Passivation
 - Chromate wash
 - Phosphate wash
 - Acid wash
Coating

➢ Quality Control
 • Pipe Temperature
 • Temple sticks
 • Infrared sensors (mixed results)
 • Dry Film Thickness (DFT)
 • Surface Temperature
 • Holiday detection
 • Traceability of pipe
 • Barcodes
 • Standardization
Handling

Damage

- Lifting and Loading
 - Trailers
 - Trains
 - Vessels- Maritime
Handling

- **Equipment**
 - Fork Lifts
 - Grippers
 - Pipe Hooks
 - Minimize Damage
 - Hydraulic Spreaders
 - Vacuum Lifters
Storage

- Stacking
 - Causes stresses on the piping.
 - Deforming the diameter of the pipe.
 - Stress is increased at every level
Storage

Stacking

- Causes stresses on the coating.
- Stacking- Abrasion and Impact damage where the pipes touch. (3 & 9 o’clock positions)
 - Pipe stacks should be blocked to prevent rolling.
Storage

Environment

- Soluble Salts
 - Chlorides
 - Nitrates
 - Sulfates

- Dirt, Dust & Mud

- Oil, Grease & Lubricants

- Chemicals
 - Acids
 - Alkalines
Storage

- Exposure
 - UV Degradation
 - Chalking:
 Deterioration of the resin / binder because of UV exposure.
 Loss of plasticizers will make the coating brittle and eventually checking in the coating.
Transportation

- **Damage**
 - Abrasion from travel movement
 - Loading & Unloading
 - Handling
Transportation

- **Damage**
 - Supports and Stops
 - Abrasion and Impact
Transportation

- VDI 2700 Association of German Engineers
 - Manual- Securing of loads on road vehicles
Transportation

- Climate / Environment
Construction

- Handling
Construction

- Field Welds
 - Surface Preparation
 - Abrasive blast cleaning
 - Hand / Power tool cleaning
Construction

- Field Welds - Surface Preparation
 - Nace No. 2
 - SSPC SP 10
 - Minimum cleaning standard
Construction

- Field Welds- Surface Preparation
 - Surface Profile
 - 2.0- 4.0 mils
 - Measurement method
 - Testex tape
Field Welds (HSS)

- Heat-Shrinkable Sleeves
 - 30 year history
 - Cross linking polyolefin.
 - Cured by “Electron irradiation”
- Polyethylene and Polypropylene coatings
- Epoxy primer is used for 3-layer systems
- Peel test- Adhesion and cure.
Construction (HSS)

18 in Oil Pipeline

- 3 layer Polyethylene
- In Line Inspection (ILI)
 - Corrosion 1st 15 km
- 131F Operating Temp
- Service- 15 yrs
- Wet, compacted sand pH 5.4
- HSS
 - Hot melt type / Epoxy Primer
 - Surface Prep Power tool
Construction (HSS)

18 in Oil Pipeline

- Massive disbonding of HSS
 - Steel surface
 - 3LPE coating system

- Significant corrosion
 - Field joint
 - Steel surface

- No significant corrosion at lower operating temperatures.
Construction (HSS)

18 in Oil Pipeline

- Longitudinal cracking at the 3 and 9 o’clock positions.
- Showed signs of thermal aging
 - Brittleness
 - Lack of flexibility
- Issues:
 - Storage conditions
 - Soil exposures
 - Service conditions
Construction (HSS)

16 in Oil Pipeline

- 3 layer Polyethylene
- In Line Inspection (ILI)
 - Severe external corrosion
 - Pitting- “Craters” at field joints
- 122F Operating Temp
- Service- 12 yrs
- Brackish w/ 2g/liter chlorides
- HSS
 - Hot melt type / Epoxy Primer
 - Surface Prep- Wire brush
 - Millscale on surface
 - Overlap 1 cm (~ 1.2 in)
Construction (HSS)

16 in Oil Pipeline

- Disbonding of HSS
 - Steel surface
 - 3LPE coating system

- Significant corrosion
 - Field joint
 - Steel surface
 - Salt crystals under HSS

- Disbondment of coating system
Construction (HSS)

Causes of Disbondment

- Surface preparation
 - Minimum Near white blast
- Application
 - Fish mouths
 - Overlaps
- Service Conditions
 - Operating temperature
 - Soil conditions
- UV Degradation during storage.
Construction

- Field Welds - PUR
 - Liquid applied Polyurethane
 - Epoxy modified
 - Operating temperature 176 F
Construction

- Backfill Materials
 - Select according to coating type
 - Pipeline Research Council International Catalogue
 - No. L52208 July 2005
 - Smaller particles do less damage
 - Average 20 mm size produce the least amount of holidays
Internal Coatings

- Coating Selection
 - Chemical Resistance
 - Carbon Dioxide
 - Hydrogen Sulfide
 - Abrasion Resistance
 - Erosion
 - Impact Resistance
 - Temperature Resistance
 - VOC Requirements
 - Corrosion Under Insulation
 - CUI
Internal Coatings

- **Immersion Exposure**
 - Water / Moisture
 - Microbiologically Induced Corrosion (MIC)
 - Planktonic Bacteria
 - Sessile Bacteria
 - Sulfate Reducing
 - Anarobic

Photo: Extensive tuberculation can discolor and contaminate water as well as result in greatly reduced water flow and pressure.
Internal Coatings

- **Immersion Exposure**
 - Abrasion Resistance
 - Impact
 - Sludge
 - Chemical Resistance
 - Inhibitors
 - Scavengers
 - Oxygen
 - Sulfide
 - Biocides - MIC Fighters
Internal Coatings

- Vapor Exposure
 - Hydrogen Sulfide H2S
 - Concrete and steel deterioration
Case History

- Water main 48 in.
 - Pre-stressed Concrete Cylinder Pipe PCCP
 - 25 years service
 - Wrapped with High strength reinforcement wire- externally
 - Coated with cement rich mortar
 - No Cathodic Protection
 - Backfill native soil
Case History

- Water main 48 in.
 - Failure location
 - 10 ft long
 - Along pipe wall
 - Concrete coating deteriorated and spalled
 - Reinforcement wires broke
 - Exposed steel substrate to soil conditions
Case History

- Water main 48 in.
 - High sulfate levels
 - Water in soil
 - Corrosion of concrete, steel wires and steel pipe
 - Water pressure exceeded the strength of the deteriorated pipe
 - BURST!!
Coating Maintenance Program

1. Identify the service conditions
2. Coating selection
3. Coating specification
4. Identify inaccessible areas
5. Contractor capabilities
6. Coating inspection
7. Pre-job meeting
8. Teamwork- communication
9. Document all phases
10. Monitor performance after installation
The End