In-Line Inspection Standards, Methods & Tools

Michael J. Placzek, P.E.
Senior Engineer
Spectra Energy
AKA: Smart Pigging
In-Line Inspection

- Standards
- Common Inspection Methods
- Tool Add-Ons & Functionality
- Tool Configuration
- Tool Run Logistics
- Information Management
First Rule of Any ILI Run

☐ 3TV

☐ Talk To The Vendor
☐ Talk To The Vendor
☐ Talk To The Vendor
First Rule of Any ILI Run

- TALK to the VENDOR
 - Timing (Deadlines, Expectations)
 - Schedule (Who, When, Where)
 - Support (What, How much, Me vs You)
 - Equipment (Mine vs Yours)
 - Capabilities (My needs vs your ability)
 - Reporting (How soon, Early Crisis)
 - Data (Format, Copies, CD/DVD/Electronic)
Standards

- NACE Recommended Practice RP0102-2002: In-Line Inspection of Pipelines (how to do it)
- API 1163, In-line Inspections Systems Qualification Standard (qualifies the tool)
- ANSI/ASNT ILI-PQ-2005, In-line Inspection Personnel Qualification and Certification (qualifies vendor personnel including analyst)
- 49 CFR 192 – Subpart O
- 49 CFR 195
- Company Standards
Common Inspection Methods

- **Magnetic Flux Leakage**
 - Probably Most Commonly Used
 - Saturate Pipe with Magnetic Flux (Longitudinal)
 - Changes in Flux Field Are Interpreted
 - Corrosion Metal Loss (% Wall Loss)
 - Other Forms of Pipe Wall Abnormalities
 - Run in Dry or Wet Lines
 - Cleanliness Issues (pipe may require chemical cleaning)
 - Speed Sensitive
 - Wall Thickness Generally Limited to 0.75 inch (due to permanent magnets)
 - Standard Resolution (+/- 15%, 20% Confidence Factor)
 - High Resolution (+/- 10%, 20% Confidence Factor)
Common Inspection Methods

- Ultrasonic Thickness
 - Array of UT Heads to Cover Surface
 - Needs Liquid Medium as Couplant
 - Speed Sensitive
 - Not So Limited on Wall Thickness
 - Tends to Be More Expensive Than MFL

- Magnetic Eddy Current
 - Crawler Technology
Common Inspection Methods

- Transverse Flux Leakage
 - Circumferential Saturation
 - Looks For Longitudinal Cracks

- Spiral Flux Leakage
 - Hybrid of Standard and Transverse Flux
 - Little Bit of Both

- Hard Spot
 - Magnetic Flux Leaves Trace
 - Trace is Interpreted
Common Inspection Methods

- Geometry / Deformation / Caliper
 - Deformation - High Resolution
 - Caliper – Lower Resolution
 - Single Channel
 - Multi-Channel
 - Ovality / Out of Round / Expansion
 - % Dent
 - % Strain (Deformation tool)
 - Bend Radius
Tool Add-Ons & Functionality

- Inertial Navigation System
 - Path From A to B Linked through AGMs
 - Can Be As Accurate as Sub-Meter GPS
- Speed Control – Variable Bypass
- Flexibility – 3D vs 1.5D
- Wireline – Tethered – Bi-Directional
- Crawler
Tool Configuration

- Some are Segmented
 - Each Function Has a Separate Segment
 - Makes Total Tool Length Long
 - Trap Barrel Modifications

- Some Have Multi-Function Segments
 - Shorter Tool Length
 - Easier To Handle
Tool Run Logistics

- ILI Companies Need Various Levels of Support from Using Company
 - Not Much at All
 - Shop Space, Compressors, Cranes
 - Responsive to Pipeline Co’s Needs

- Pipeline Company
 - Normally Handles Tool In & Out of Barrel
 - Normally Runs Product Flow
 - Decontaminates
Information Management

- High Resolution Runs Provide Gigabytes of Data
 - Better Have a Database Handy
 - Schedule & Track Work (DOT Proof)
 - Compare Against CP Database or Excavation Records
 - Compare Against Previous ILI Runs
 - Determine Accuracy of Tool Run – Unity Plot
 - GIS Mapping System Integration
 - Overlay Pipeline Information with Corrosion Loss, Cathodic Protection, CIS, DCVG, ACVG, HCA, Class Location, One-Call, Leak, Damage, Excavations, etc.
Remember The First Rule !!!

3TV !
Questions ??