

COURSE OUTLINE

- I. Introduction Why & What
- I. Code
- II. Evaluation of pipe
 - A. Types of Anomalies B. Methods of Analysis
- III. Repair Methods

 - A. Split sleeve B. Composite sleeve C. Clamp
- IV. Safety
- V. Economics
- VI. Products
- VII. Questions & Closing Remarks

	pointintegrity	y.com
PI		
Point Integrity	2011 AUCSC	E
Why do w	/E NEED THE ABILITY TO REPAIR A PIPELINE?	
	Public safety Operational restriction or loss	
	 Operational restriction or loss of service 	
	 Economics 	

liquid pipelines are governed by the states in which they reside, most of the time each state adopts the federal code.

FEDERAL CODE – THE MANDATE

§ 192.703(a) – "No person may operate a segment of pipeline, unless it is maintained in accordance with this subpart."

FEDERAL CODE – RECORD KEEPING

§ 192.709 – Each operator shall maintain the following records for transmission lines for the periods specified:

(a) The date, location, and description of each repair made to pipe must be retained for as long as the pipe remains in service.

FEDERAL CODE – REPAIR OF DAMAGE OR IMPERFECTIONS

§ 192.713(a, b)

(a) Each imperfection or damage that impairs the serviceability of pipe in a steel transmission line operating at or above 40% SMYS must be –

(1) Removed by cutting out and replacing a cylindrical piece of pipe; or

(2) Repaired by a method that reliable engineering tests and analyses show can permanently restore the serviceability of the pipe.

(b) Operating pressure must be at a safe level during repair operations.

- § 192.717(a,b,c) Each permanent field repair of a leak on a transmission line must be made by
 - (a) Removing the leak by cutting out and replacing a cylindrical piece of pipe; or

FEDERAL CODE – REPAIR OF LEAKS (CONTINUED)

(4) If the leak is on a submerged offshore pipeline or submerged pipeline in inland navigable waters, mechanically apply a full encirclement split sleeve of appropriate design.

(5) Apply a method that reliable engineering tests and analyses show can permanently restore the serviceability of the pipe.

EVALUATION OF PIPE

§ 192.485(a,b,c)

(a) *General Corrosion*. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for the MAOP of the pipeline must be replaced or the operating pressure reduced commensurate with the strength of the pipe based on actual remaining wall thickness. However, corroded pipe may be repaired by a method that reliable engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting so closely grouped as to affect the overall strength of the pipe is considered general corrosion for the purpose of this paragraph.

EVALUATION OF PIPE

§ 192.485 (a,b,c)

procedures.

(b) *Localized corrosion pitting*. Each segment of transmission line pipe with localized corrosion pitting to a degree where leakage might result must be replaced or repaired, or the operating pressure must be reduced commensurate with the strength of the pipe, based on the actual remaining wall thickness in the pits.

Point Inte	7 2011 AUCSC	
	REPAIR METHODS	
	A. Split sleeveB. Composite sleeveC. Clamps	
	Do a pro/con list of each (split sleeve that is a C A and isn't welded up can have water migrate in out).	
	CAUTION: Not all repair methods are compatibute with all anomalies (i.e. composites with cracks).	
	p	ointintegrity.com

ACCEPTABLE THREAT PREVENTION AND REPAIR METHODS

Table 4 Acceptable Threat Prevention and Repair Methods (Cont'd)

	Third-P	arty Da	amage		osion ated		Equip	nent		Incorrect Operation		Weatl Relat		Manuf	acture		Const	uction		O-Force	Environ ment
Prevention, Detection, and Repair Methods	TPD(IF)	PDP	Vand	Ext	Int	Gask/ Oring	Strip/ BP	Cont/ Rel	Seal/ Pack	 01	cw	L	HR/F	Pipe Seam	Pipe	Gweld	Fab Weld	Coup	WB/B	EM	scc
epairs																					
Pressure reduction		х		×	х					1.6.1				х	x	х	x	x			x
Replacement		х	х	х	х	х	х	х	×		×	х	×	х	х	х	х	х	×	×	х
ECA, recoat				х	х											х					
Grind repair/ECA		x	х											х	х	х	х				х
Direct deposition weld			х	х																	
Type B, pressurized sleeve		×	×	х	х									x	x		х	x			х
Type A, reinforcing sleeve		х	х	х										х	х						х
omposite sleeve				х																	
poxy fitled steeve		×	×	х										х	x	×	×	×	×		
Mechanical leak clamp				х																	

GENERAL NOTE: The abbreviations found in Table 4 relate to the 21 threats discussed in para. 5. Explanations of the abbreviations are as follows:

nuons are as	1011	lows:
		Control/Relief Equipment Malfunction
Соцр	=	Coupling Failure
CW	=	Cold Weather
EM	-	Earth Movement
Ext	-	External Corrosion
		Defective Fabrication Weld
Gask/Oring	-	Gasket or O-Ring
Gweld	=	Defective Pipe Girth Weld
		Heavy Rains or Floods
Int	=	Internal Corrosion
10	=	Incorrect Operations Company Procedure
L	=	Lightning
PDP	-	Previously Damaged Pipe (delayed failure mode)
Pipe	=	Defective Pipe
Pipe Seam	=	Defective Pipe Seam
SCC	=	Stress Corrosion Cracking
Seal/Pack	=	Seal/Pump Packing Failure
Strip/BP	Ψ6	Stripped Thread/Broken Pipe
		Damage inflicted by First, Second, or Third Parties
Vand	25	Vandalism
WB/B	$\sim 10^{-10}$	Wrinkle Bend or Buckle

EVALUATE THE SITUATION

- •Is the line in service?
- •Can the line be taken out of service?
- •Does the line need to be taken out of service?
- •Does the pressure need to be reduced?
- •What temperatures exist on the pipeline?
- Are ambient temperatures hot or cold?
- •Is it wet or dry?
- •How quickly does the repair need to be made?
- •What are the resources available?
- •Are there cracks?
- •Is there a leak?
- •Does your O&M manual cover pipeline repairs?
- •Long term can you certify people on a product?

pointintegrity.com

2011 AUCSC

METHODS O	F ANALYSIS
-----------	------------

ASME B31G

RSTRENG

PI		
MAXPIT2.EXE		
DATA BASE: MAXPIT	MAXPIT CALCULATIONS	LOCATION: 0000-1000.000
This program	Guide Material Appe calculates the maxi d safe operating pr IS REQUIRED TO PERI	imum allowable ressure.
STATION NUMBER: CORROSION PIT DE CORROSION PIT LE NOMINAL WALL THI NOMINAL DIAMETER YIELD GRADE.PSI CLASS LOCATION (CROAD CROSS	NGTH, INCHES: CKNESS,INCHES: OF PIPE,INCHES: (X 1000): 0,1,2,3,4):	10000000 0.100 10.00 0.312 30.000 52 21
DO YOU WANT A PR		BNB

smission Pipeline Repair Method (AUCSC - 5/18/2010)

pointintegrity.com

Point Integrity	
MAXPIT2.EXE	
ACCORDING TO THE INFORMATI AND THE ASME GUIDE MATERIAL	
* SAFE PRESSURE FOR THE CORRODED * ANY REDUCED MAOP SHOULD BE * DIVISION MANAGER AND VICE PRES ************************************	THE CALCULATED MAXIMUM * ME GUIDE SAYS THE MAXIMUM * AREA IS 603 PSI. * VERIFIED AND APPROVED BY *
Press any key to continue	

Transmission Pipeline Repair Methods (AUCSC - 5/18/2010)

PL Point Integrit	у						
RSTRENG2.	XE						_ 🗆 ×
-							
eFil e	ename : C:\	CORRONRST	RENG\A-155.3	B			1
	Length	Depth	gths and Pit Length	Depths- Depth	Length	Depth	
	inch	MĨL	inch	MĨL	inch	MĨL	
	1.00	20	13.00	60			
	2.00	30	14.00	50			
	3.00 4.00	24 40	15.00 16.00	70 92			
	6.00	35	17.00	30			
	7.00	22	18.00	33			
	8.00	43	19.00	50			
	9.00	38	20.00	32			
	10.00	42	21.00	57			
	11.00 12.00	58 70					
	12.00	10					
Use a	rrows keus.	page dow	n, page up,	to view.	ENTER to qu	uit.	

Transmission Pipeline Repair Methods (AUCSC - 5/18/2010) pointinteg

Transmission Pipeline Repair Metho (AUCSC - 5/18/2010)

Point Integrity				
RSTRENG2.EXE				
FILENAME : C:\CORRO\RST Pressure, psi		B Predicted Burst Pressure psi	Factor of Safety	
CASE 1 - Effective Area CASE 2 - 0.85 dL Area CASE 3 - B31G	779 736 604	1,131 1,021 839	1.45 1.31 1.08	
Diameter, inches = 30. SMYS, psi = 52. Total Length, inch = 20 Eff. Length, inch = 13 Start, inch = 8	000 Max. .00 Max. .00 I	l Thickness, in . Pit Depth, in . Depth/Thickne Eff. Area, inch Stop, inc	ch = 0.092 ss = 0.29	
(*) If the calculated saf the user follows (CAS the established press	E 1, CASE 2,	. or CASE 3) is	less than	
F7 Printer	F8	File	F10 Quit	

smission Pipeline Repair M (AUCSC - 5/18/2010)

dias	i Sfer Wedner	march Reports Halp		
B		made where the		
100	1.124			
			OPROSION PROFILE - B-229396.7	
		NUMBER OF STREET	LL COMPLETENTIANTLA I-ALE OUTER EXEL OF THE ISON COMPLETE FE	
		NAME OF TAXABLE PARTY.	PETITION CONTRACTOR OF AN OLD AND A CONTRACTOR OF A	
1	- LEFT	1		
44				
50 B		+ +		
- 1				
	inclusionent (Ind	Pit Depth (Mil)	Mothed Max.Safe Pressure (paig) Durat Pressure (paig) # Saf	
	18.00	70	Effective Area 787 1154 1.4	
	20.00	60	3.856LArea 734 1078 1.3 AGME 831G 938 883 1.1	
	21.00	105	P + 259*10 jung-CalcadedPresses	
	22.00	46 80		
-	23.00	35	Eduktive(NAOP (ang)	
	25.00	90	Pipe Quarte Deneter (r) [3(0) Directors Langth (N) [4(0)	
	26.00	110	Figs Well Technics (v) (0.4)6 Effective Area (h)P	
-	27 D0 29 D0	95 70	SMYS (pu) [52,000 Hex He Deph (n) [1125	
-	29.00	125	Total Longth (H) New Depth/Mill Theixman (11)	
	30.00	110	Set (a) France Brad (a) France	
-	24.00	40		
hoart	Delete Inco	eters Additioners	e Pasta Close Eave-As Report Caluade	
-				

SAFETY

Excavation safety – trenching and shoring - follow 29th CFR Part 1926 Subpart P
Personnel safety – dig under pressure or not?
Air permits, environmental permits, city land permits, Corps of Engineers permits, County permits, State permits
Notifications to DOT, FERC, EPA, Local Emergency Response Committees, NTSB, NRC, State and Local Officials, etc.

•Each case must be individually evaluated to choose the best choice. Of course, if throughput is adversely affected the quickest and safest option is the best.

•Due to the amount of DOT approved choices today there are many different possibilities that weren't there just 5-10 years ago.

WEBSITES...(DO SOME RESEARCH!)

Search on Pipeline Repair: Aquawrap http://www.corrodefense.com/ Armor Plate http://www.armorplateonline.com/documents/Brochure3_7.pdf Black Diamond by TDW www.tdwilliamson.com http://www.wutc.wa.gov/webimage.nsf/web+objects/pipeline/\$file/Clockspring.pdf Clockspring m-tec http://www.pipelineintervention.com/repair.htm# Mid-States http://www.mid-states-pipe-repair.com/ PermaWrap by WrapMaster http://www.wrapmaster.us/ PETROSleeve http://www.petrosleeve.com/fags.html PLIDCO http://www.drshannonco.com/plidco%20index.htm Steel Works http://www.steelworks.ca/pipelinerep.html **TDWilliams Steel Repair Sleeves** http://www.allanedwards.com/steel_pipeline_sleeves.php Tecnomarine http://www.pr67.dial.pipex.com/clamp.htm Tekmar http://www.tekmar.co.uk/equipment_prc.shtml

pointintegrity.com

2011 AUCSC

QUESTIONS AND ANSWERS

•What was left out that you would like to

see contained in this presentation?

•What questions do you have that were

not answered?

•Suggestions for improvement?

Recommend a course by Keiffner or Rosenfeld on ASME B31.8.

