Appalachian Underground Corrosion Short Course - 2023

Dynamic Stray Current

Presenter: Thomas Holzerman, General Supervisor, Corrosion Engineering

Philadelphia Gas Works

Philadelphia Gas Works

Types of Stray Current

Static – Covered in Intermediate Course Steady source of current

AC – Covered in separate class in this course

Dynamic Stray Current

Dynamic Stray Currents

- Dynamic stray currents are caused by variable loads
 - DC transit systems
 - Chemical/smelter plants
 - Welding operations
- Telluric stray currents are caused by solar activity

The Earth As A Conductor

- Planet Earth is a huge, non-uniform conductor
- Resistivity is the inverse of soil conductivity, which is the measure of *how* conductive the electrolyte (earth/water) is in a given area
- Uniform electrolytic resistivity only exists in the *middle of the ocean*

What's More Conductive?

Resistivity Values

Some values

- Solid rock >1,000,000 ohm-cm
- Sand 5,000-100,000 ohm-cm
- Loam 5,000-15,000 ohm-cm
- Wet Clays 100-4,000 ohm-cm
- Seawater <200 ohm-cm
- Iron 0.000022 ohm-cm
- Copper 0.000007 ohm-cm

Philadelphia Gas Works

Why Resistivity Matters

- DC transit systems have MASSIVE loads required to power trolleys, trains, etc.
- Discontinuities in power system are overcome with underground metallics completing circuit
- Even if continuous, the voltage loads are so great that gradient fields can induce voltages on underground metallics

Why Resistivity Matters

- Electricity wants path of least resistance.
 - Will stray currents in ground conduct on:
 - A vein of low resistivity soil (100 ohm-cm)
 OR
 - A bare steel pipe (0.000022 ohm-cm)
- Additionally pipe in lower resistivity soil will be more at risk than pipe in higher resistivity soil

Stray Current – Visualized

Philadelphia Gas Works

Stray Current – Visualized

Gradients

- Current flow caused by gradients occurs when the pipe passes through a "line" on the electric field
 - Each "line" represents a step down in intensity the further away it is from the source of the field
 - Current generated depends on the load/intensity of that area of the field and the resistivity of the soil $(I = \frac{V}{R})$

In Either Scenario...

Where current enters the pipe – potentials become more negative (appear protected). Not an area of concern. (although if you see pickup, there's discharge somewhere else!)

Where current discharges from the pipe – potentials become more positive. This is where corrosion occurs!

Investigating Stray Current

- All pipe-to-soil variations should be investigated
 - Especially if the voltage variation is predominantly indicates discharge
- Generally if the P/S reading does not become more positive than -0.85 V_{cse} polarized or the electropositive shift is <10 mV, then a corrosive condition does not likely exist

Initial Detection of Stray Current

'KS

Initial Detection of Stray Current

- Rapid fluctuations present in real time
- "Big picture" often unable to be taken in short-term recordings with voltmeters and visual observation
 - Voltage recorders over 24-168-hour periods more reliable
- NOTE: telluric currents may not be noticeable with short-term readings at all

How to Find the Source

- After noticing fluctuations, the next step is to figure out where they're coming from
- Observation are there any tracks or overhead power cables nearby?
- Local corrosion committees other utilities/consultants with historical documentation of local transit/mining/chemical ops
 - Transit authority might also sit on committee

Measuring Stray Current

Use of calibrated pipe spans to measure current magnitude and direction

Measures current on pipe, not relationship w/ source

NOTE: POSITIVE POTENTIALS MEASURED WITH METER HOOK-UP AS SHOWN INDICATES CURRENT FLOW IN DIRECTION SHOWN

Measuring Stray Current

Philadelphia Gas Works

Measuring Stray Current

- Correlations
 - Measurement of relationship between source of interference/structure voltage and structure-to-earth potential plotted on x-y graph
 - Source/structure voltage E_{sc}
 - E_{sc} polarity (+) on source, (-) on pipe
 - For complete picture, E_{sc} is compared to P/S measurements at multiple locations along pipeline/interfered-with structure

Philadelphia Gas Works

Tools

- Voltage measurements
 - X-Y Plotter (for the oldheads)
 - Dual channel voltage recorder
 - Sychronizable single channel voltage recorders
- Reference electrode
- Wire reels

Correlations – Beta

- Plot the E_{sc} on Y-axis
- Plot P/S measurement on X-axis
- Beta = slope

•
$$\beta = \frac{\Delta V_{gsc}}{\Delta E_{sc}}$$

What the Beta Means

Negative beta – pickup

Positive beta – discharge

Philadelphia Gas Works

What the Beta Means

- Vertical slope (β = 0) no influence from stray current
 - RARE double-check equipment and re-run test for repeatability
- No beta/no correlation you've got the wrong source, bubba. Try again.

Beta Analysis

- Correlations must be measured at multiple locations on pipeline to determine areas of pickup and discharge
- Location with largest (shallowest) positive beta – area of greatest potential discharge

Philadelphia Gas Works

Mitigation – Controlling the Source

Embedded Track

Figure 2-42a: Typical Embedded Track Installation Source: Sidoriak, W., Rail Isolation on the Baltimore Central Light Rail Line, MP, Vol. 32(7), July 1993, p.36

Stray Current Control for the St. Louis Metrolink Rail System, MP, Vol. 34(1), Jan. 1995, p.22

Ensuring Rail Continuity

Mitigation – Galvanic Anodes

- For small magnitude stray current mitigation, galvanic anodes can be used
 - Onshore magnesium
 - Rare for dynamic stray current because of the magnitude of voltage gradients/current produced
 - Generally reserved for static stray current mitigation

Mitigation - Bonds

- Solid bonds
- Reverse current switches
- Resistance bonds
- Potential controlled force drain rectifiers
- Goal: return current safely back to its source
 - Metallic path in the corrosion circuit

Calculations

- GOAL: Reduce variation in V_g at point of greatest discharge to negligible levels
 - Stray current elimination is impossible without shutting down the source, especially with magnitudes as great as produced by DC transit systems
- Accomplished through draining current back to source

Mitigation – Resistive Bond Master equation

$$V_g = V_{go} + \Delta V_{gcp} + \Delta V_{gsc} + \Delta V_{gb}$$

Where:

- V_g Aggregate P/S potential
- V_{go} Natural/native P/S potential
- ΔV_{gcp} Change in P/S potential due to CP
- ΔV_{gsc} Change in P/S potential due to stray current
- ΔV_{gdb} Change in P/S potential due to mitigation bond

• Stray current is mitigated when:

$$\Delta V_{gcs} + \Delta V_{gb} = 0$$

• ΔV_{qcs} – discerned from beta correlation

- Testing to solve for R_b
- ASSUMPTIONS:
 - Test setup is at maximum discharge point
 - Temporary bond has zero resistance
 - Zero leakage discharge from bond to soil
 - Current values are all positive (flow from structure back to source)

Determine internal resistance of stray current circuit:

Determine internal resistance of stray current

* - I_1 OFF should always be 0 A. ΔV_g at discharge is negative.

Philadelphia Gas Works

$$V_g = V_{go} + \Delta V_{gcp} + \Delta V_{gsc} + \Delta V_{gb}$$

- With no CP applied, if $\Delta V_{gsc} + \Delta V_{gb} = 0$, then $V_g = V_{go}$ and $V_g - V_{go} = 0$
- Equation then simplifies to: $-\Delta V_{gsc} = \Delta V_{gb}$

- From the graph on right: $\Delta V_{gsc} = \beta * \Delta E_{sc}$
- If $-\Delta V_{gsc} = \Delta V_{gb}$, then $\Delta V_{gb} = -\beta * \Delta E_{sc}$
- Ohm's Law: V = IR
- $V = \Delta V_{gb}$ $R = R_{discharge}$

$$\Delta V_{gb} = -\beta * \Delta E_{sc} \text{ and}$$
$$\Delta V_{gb} = I_B * R_{discharge}$$

• Then:

$$-\beta * \Delta E_{sc} = I_B * R_{discharge}$$

• Simplifying:

$$I_{B=}\frac{-\beta * \Delta E_{sc}}{R_{discharge}}$$

 Basic electrical theory also states that the sum of all resistances:

$$E_{SC} = I_b * \sum R_N$$

• With a bond installed:

$$\sum R_N = R_b + R_{int}$$

 R_{int} is the resistance at the point on the pipe where current pickup occurs

Philadelphia Gas Works 🖌

Mitigation – Resistive Bond $E_{SC} = I_b * (R_b + R_{int})$

Solving for R_b:

$$R_{b} = \frac{E_{sc}}{I_{b}} - R_{int}$$

Substitute value for I_b:

$$R_{b} = \left(E_{SC} * \left(\frac{R_{discharge}}{-\beta * E_{SC}}\right)\right) - R_{int}$$

The E_{SC} values cancel out, and you're left with:

$$R_b = \frac{R_{discharge}}{-\beta} - R_{int}$$

A Note About AC

While it will be covered in another class in this course, it is important to account for AC for safety reasons. Always take an AC voltage measurement to your reference electrode. Voltages-to-earth in excess of 15 V_{AC} are dangerous for both step and touch potentials. Always measure before you start work!

The Effects of Stray Current

- Dynamic stray current can have disastrous effects on pipelines if left ignored
- Impressed current densities can reach hundreds of amperes causing accelerated metal loss
- Graphitization leaching of iron from steel, cast iron, and ductile iron structures, leaving behind only the carbon from within the matrix

Special Thanks

- Kevin Groll
- Ed Richey
- James Jameison
- Lake Barrett
- SEPTA
- Philadelphia Gas Works

QUESTIONS?

