Basic Electricity

Appalachian Underground Corrosion Short Course

Instructor - Tim Perkins

Appalachian Underground Corrosion Short Course

Chapter 1 - Basic Electricity

- Introduction
- Electrical Fundamentals
- Physical Matter
- Two General Types of Electricity
- Basic Terms
- Ohm's Law
- Basic Electrical Circuit
- Series Electrical Circuit
- Parallel Electrical Circuit
- Combination Circuits

Introduction: What is Corrosion?

Corrosion Is The Destruction Or Deterioration Of A Material Due To A

Reaction With Its Environment

- Corrosion of metals and alloys involves flow of electrical current

Current flow in Corrosion

Current flow in Corrosion

Current flow in Corrosion

Corrosion Chemistry: Matter

- Substance that occupies space and has mass
- Solids
- Liquids
- Gases
- Whatever the form, matter is made up of chemical elements

Corrosion Chemistry: Elements

The Periodic Table

Corrosion Chemistry: The Atom

Corrosion Chemistry: The Atom

Corrosion Chemistry: The Atom

Protons (+) and Neutrons (no charge) make up the nucleus.

Electrons (-) very light and orbit around the nucleus.

The number of positivelycharged protons equals the number of negatively charged electrons.
Therefore, the atom has no net electrical charge.

Corrosion Chemistry: Molecules and Compounds

- Molecule - combination of two or more atoms.
- Molecules are held together by a force called chemical bonding.
- Example;

Molecule Only

Hydrogen (H)

Hydrogen (H)

Corrosion Chemistry: Molecules and Compounds

- Compound - combination of two or more DIFFERENT atoms.
- Example;

Molecule and Compound

Corrosion Chemistry: Molecules and Compounds

Molecule / Compound: the smallest part of copper sulfate (CuSO_{4})

Corrosion Chemistry: Ions

- Ions form when atoms or molecules lose or gain electrons
- Electrically charged atoms are referred to as ions.
- An atom that becomes an ion by GAINING electron(s) yields a negative charge - this is called an anion.
- An atom that becomes an ion by LOSING electron(s) yields a positive charge - this is called a cation.

Corrosion Chemistry: Ions

Cations $(+)$	Anions (-)
Hydrogen ions $-\mathrm{H}^{+}$	Hydroxyl ions $-\mathrm{OH}^{-}$
Sodium ions $-\mathrm{Na}^{+}$	Chloride ions $-\mathrm{Cl}^{-}$
Calcium ions $-\mathrm{Ca}^{2+}$	Fluoride ions $-\mathrm{F}^{-}$
Ferrous ions $-\mathrm{Fe}^{2+}$	Sulfate ions $-\mathrm{SO}_{4}{ }^{2-}$
Ferric ions $-\mathrm{Fe}^{3+}$	Nitrate ions $-\mathrm{NO}_{3}-$
Aluminum ions $-\mathrm{Al}^{\mathbf{3 +}}$	Phosphate ions $-\mathrm{PO}_{4}{ }^{2-}$

Corrosion Chemistry: Electron Movement

- Some materials can pass electrons between atoms
- Materials that can pass electrons are called conductors
- Most metals are conductors
- Atoms which do NOT pass electrons are known as insulators
- Insulator examples; Rubber and Glass

Corrosion Chemistry: Electron Movement

How Electricity Works

With no current appled the free electrons, within the copper atoms, will move randomly between other atome

How Electricity Works

With current appiled the Free electrons, within the copper atome, will move in the same direction between other atoms

The Enctreerkolindsetcom

Electricity through a solid conductor is the flow, or movement, of electrons!

Corrosion Chemistry: Completed Circuit

For movement of charge, the circuit needs to be complete. How Electricity Works

Corrosion Chemistry: Electron and Ion Movement

Corrosion Cell

1. Anode
2. Cathode
3. Metallic Path
4. Electrolyte

Practical Case
Showing Conventional Current Flow

- Conventional current Flow - is the flow of current from positive to negative in an electrical circuit.
- In a circuit, the current must return to the original source.
- Electromotive Force is the potential difference between the two structures.
- Flows in the opposite direction of the movement of electrons

Electricity

- Two types of electricity

- Alternating Current (AC)
- Direct Current (DC)

Appalachian Underground Corrosion Short Course

Alternating Current (AC)

Alternating Currents (AC)

- Current flows first in one direction then in the opposite direction in accord with an established pattern
- Hertz - is a single cycle of the produced wave form
- Alternating current, in the US, has a frequency of 60 cycles per second, referred to as 60 Hertz (or 60 Hz)

Significance of Alternating Current

- AC is a relatively insignificant factor as a cause of corrosion except in very special cases
- AC is used for a power source for Cathodic Protection such as rectifiers (which converts AC power to DC power)

Direct Current (DC)

- Flows in one direction
- Examples
- Flash light battery

- Car battery

Direct Current (DC)

Significance of Direct Current

- DC current is very important in the corrosion process

- Involved in various types of corrosion cells
- Involved in corrosion control - especially in cathodic protection

Transformer Rectifier

Steps down AC voltage and

Converts AC to DC

Electrical Rectification

Basic Electricity Terms

- Electrical Circuits
- Voltage - Volts (V)
- Current - Amps (A)
- Resistance - Ohms (R or Ω)
- Other Related Electrical Terms
- Conductivity
- Resistivity
- Impedance
- Power

Electrical Circuits \& Voltage

Voltage:

- pushing force of electrons within a circuit
- Electrical pressure
- More pressure (Voltage) = More electron flow
- Measured in Volts- commonly represented with a (V or E)

Voltage

- Although 1 volt is the basic unit, there are instances where much smaller units are used in Corrosion work.

\cdot	$=1000$ millivolts	
\cdot	$=100$ millivolts	
\cdot	0.100 volts	$=10$ millivolts
0.010 volts	$=$	1 millivolt
\cdot	0.001 volts	$=1$ microvolt

Voltage

- DC voltage sources used to provide cathodic protection current:
- Galvanic anodes
- Zinc
- Aluminum
- Magnesium

- Driving voltage of anodes may be measured in tenths of a volt or in millivolts.
- Higher capacity sources such as AC to DC rectifiers or DC generators of various types

Electrical Circuits \& Current Flow

Current:

- Flow of charge through a conductor (electron flow)
- More pressure (Voltage) = FASTER electron flow
- Measured in Amperes (Amps)- commonly represented with an (I)

Current Flow

- Although one ampere or amp is the basic unit, there are instances where much smaller units are used.

- $\quad 1.000$ ampere	$=1000$ milliamperes
. $\quad 0.100$ ampere	$=100$ milliamperes
- $\quad 0.010$ ampere	$=10$ milliamperes
. $\quad 0.001$ ampere	$=1$ milliampere
- 0.000001 ampere $=1$ microampere	

Electrical Circuits \& Resistance

Resistance:

- Resisting the flow of electrons
- More resistance = LOWER flow of electrons
- Measured in Ohms (Ω)- commonly represented with an (R)

Appalachian Underground Corrosion Short Course

Resistance

- Although One ohm (R) is the basic unit of resistance. Other units may also be involved in corrosion work

10,000,000 Ohms	=	10 Megaohms
1,000,000 Ohms	=	1 Megaohms
10,000 Ohms	=	10 kiloohms
1,000 Ohms	=	1 kiloohms
1 Ohms	=	1000 milliohms
0.1 Ohms	=	100 milliohms
0.01 Ohms	=	10 milliohms

Appalachian Underground Corrosion Short Course

Resistance: Material, Temperature, and Size Does Matter

Size

Length

Short; Less Resistance

Long; More Resistance

Thickness

Thin; More Resistance

Thick; Less Resistance

Temperature

200° F; More Resistance

Material

Aluminum; More Resistance

Resistivity

- resistivity is used to indicate the characteristic ability of a material to conduct electricity.
- resistivity is resistance along a unit distance.
- The symbol used for resistivity is ρ (Greek letter rho).
- Measured in ohm-centimeter (Ω-cm).

Resistance to current flow is lowest when:
$>$ Low resistivity (high-conductivity) media
$>$ Short length for current flow to travel
> Large area of current flow Resistance to current flow is highest when:
$>$ High-resistivity (low-conductivity) media
$>$ Long path for current flow to travel
$>$ Small cross-sectional area of current flow

Conductivity

- Is the inverse (opposite) of resistivity.
- Conductivity is the ability to conduct a flow of current
- Measured in Siemens per meter (S/m)
- Different materials have different values of conductance.
Current conducting capability

$$
\begin{array}{ll}
\hline \text { (based on Copper being } & 100 \% \text {) } \\
\text { Copper - } & 100 \% \\
\text { Aluminum - } & 60 \% \\
\text { Magnesium }- & 36.8 \% \\
\text { Zinc- } & 27.6 \% \\
\text { Brass - } & 24.6 \% \\
\text { Steel - } & 9.6 \% \\
\text { Lead - } & 8.0 \%
\end{array}
$$

Additional concepts

Impedance

- Impedance is the total opposition that a circuit presents to alternating current, similar to resistance in a direct current circuit.
- Impedance is measured in ohms, as is DC resistance.

Power

- Power is the energy used by an electrical device.
- Power is measured in watts or wattage.

Ohm's Law

Ohm's Law

- Voltage is measured in Volts, with one volt being defined as the electrical pressure required to force an electrical current of one ampere through a resistance of one Ohm.
- With a fixed driving voltage applied to an electrical circuit
- The amount of current flowing through the circuit decreases as the circuit resistance increases
- The amount of current flowing through the circuit increases as the circuit resistance decreases

Ohms Law is $\mathrm{E}=\mathrm{IR}$

$$
V=I R
$$

$$
I=\frac{V}{R}
$$

Example of Consistency: Same Units of Measure

Volts (V) = ? V
Resistance $(\Omega)=3.5 \Omega$
$V=I x R$
$V=12 \mathrm{~V}$
Current (I) $=3.42 \mathrm{~A}$

Volts (V) = ? V

$$
\begin{aligned}
& \text { Resistance }(\Omega)=3.5 \Omega \\
& \text { Current }(\mathrm{I})=3420 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{array}{cc}
V=I \times R & V=11970 V \\
V=3420 m A \times 3.5 \Omega & \\
V=3420 \mathrm{~mA} \times 3.5 \Omega & V=12 \mathrm{~V}
\end{array}
$$

Example of Consistency: Same Units of Measure

Volts (V) $=4000 \mathrm{mV}$
Resistance (Ω) $=3.5 \Omega$ Current (I) = ?

$$
\begin{gathered}
I=\frac{m V}{R} \\
I=\frac{4000 \mathrm{mV}}{3.5 \Omega} \quad \text { INCORRECT!!!!! }
\end{gathered}
$$

Example of Consistency: Same Units of Measure

Volts (V) $=4000 \mathrm{mV}$ Resistance $(\Omega)=3.5 \Omega$ Current (1) = ?

$$
1 \text { ampere } \quad=1000 \text { milliamperes }
$$

Volts $=16 \mathrm{~V}$ Resistance $=3.5 \Omega$ Current $=$? A	$I=\frac{V}{R}$	$I=4.57 \mathrm{~A}$
Volts $=6 \mathrm{~V}$ Resistance $=? \Omega$ Current $=1.5 \mathrm{~A}$	$R=\frac{V}{I}$	$R=4 \Omega$
Volts $=? \mathrm{~V}$ Resistance $=5 \Omega$ Current $=.4 \mathrm{~A}$	$V=I X R$	$V=2 \mathrm{~V}$
Volts $=2 \mathrm{mV}$ Resistance $=.04 \Omega$ Current $=$? A	$I=\frac{V}{R}$	$I=.05 \mathrm{~A}$
Volts $=2 \mathrm{~V}$ Resistance $=? \Omega$ Current $=54 \mathrm{~mA}$	$R=\frac{V}{I}$	$R=37.04 \Omega$

Ohms Law

Basic Circuit

Parallel Circuit

Series Circuit

Series-Parallel Circuit

Components / Schematic Symbols

Basic Circuit

Series Circuits

Series Circuit

Property	Series Circuit
Current	Current is the same everywhere $I_{T}=I_{1}=I_{2}=I_{3}$
Resistance	Total resistance is additive $R_{T}=R_{1}+R_{2}+R_{3}$
Voltage	Voltage Drops may be different depending on the values of each resistance, but the sum of the voltage drops $\left(V_{T}\right.$ or $\left.E_{T}\right)$ must add up to the voltage of the source (Kirchoff's Voltage Law) $V_{T}=V_{1}+V_{2}+V_{3}$
Kirchoff's Law	Voltage Law: The sum of the source voltages around any circuit equals the sum of the voltage drops across the resistances in the circuit

Current	$\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}$
Resistance	$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
Voltage	$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$

Kirchoff's Law Voltage Law:
The sum of the source voltages around any circuit equals the sum of the voltage drops across the resistances in the circuit

1. Series or Parallel?
2. Build a Chart
3. Fill in what you are given/fill in quick grabs
4. Calculate the rest using Ohm's Law

Resistor	\mathbf{V}	\mathbf{I}	\mathbf{R}
1	2 V	.02 A	100Ω
2	6 V	.02 A	300Ω
3	1 V	.02 A	50Ω
Total	9 V	.02 A	450Ω

Current	$I_{T}=I_{1}=I_{2}=I_{3}$
Resistance	$R_{T}=R_{1}+R_{2}+R_{3}$
Voltage	$V_{T}=V_{1}+V_{2}+V_{3}$

Kirchoff's Law Voltage Law:
The sum of the source voltages around any circuit equals the sum of the voltage drops across the resistances in the circuit

1. Series or Parallel?
2. Build a Chart
3. Fill in what you are given/fill in quick grabs
4. Calculate the rest using Ohm's Law

Series Circuit

Series Circuit

$\mathrm{E}_{1}=8 \mathrm{~V}$
$\mathrm{E}_{2}=4 \mathrm{~V}$
$\mathrm{R}_{1}=2 \Omega$
$\mathrm{R}_{2}=4 \Omega$
$1 \mp \equiv 0.67 \mathrm{~A}$
$\mathrm{V}_{1} \equiv 1.34 \mathrm{~V}$
$\mathrm{V} 2 \equiv \underline{\underline{\equiv 2}} \mathbf{2 . 6 8 \mathrm { V }}$
R于 $\equiv \underline{\underline{6 \Omega}}$
Which Direction?

Counter-Clockwise

Resistor	\mathbf{V}	\mathbf{I}	\mathbf{R}
$\mathbf{1}$	1.34 V	0.67 A	2Ω
$\mathbf{2}$	2.68 V	0.67 A	4Ω
Total	4 V	0.67 A	6Ω

Series Circuit

Property	Series Circuit
Current	Current is the same everywhere $I_{T}=I_{1}=I_{2}=I_{3}$
Resistance	Total resistance is additive $R_{T}=R_{1}+R_{2}+R_{3}$
Voltage	Voltage Drops may be different depending on the values of each resistance, but the sum of the voltage drops $\left(V_{T}\right.$ or $\left.E_{T}\right)$ must add up to the voltage of the source (Kirchoff's Voltage Law) $V_{T}=V_{1}+V_{2}+V_{3}$
Kirchoff's Law	Voltage Law: The sum of the source voltages around any circuit equals the sum of the voltage drops across the resistances in the circuit

Parallel Circuits

Parallel Circuits

Parallel Circuit

Property

Current

Parallel Circuit

Total current flowing into and out of the junction point of the branches equals the sum of branch currents (Kirchhoff's Current Law). $I_{T}=I_{1}+I_{2}+I_{3}$
Resistance Total resistance is always less than the smallest resistance in the circuit.

$$
R_{T}=\frac{1}{1 / R_{1}+1 / R_{2}+1 / R_{3}}
$$

Voltage $\quad \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}$

Kirchoff's Current Law: The law states that as much current flows away from a point as Law flows toward it. (Parallel Circuit)

Resistor	\mathbf{V}	\mathbf{l}	\mathbf{R}
$\mathbf{1}$	12 V	0.8 A	15Ω
2	12 V	1.5 A	8Ω
3	12 V	1 A	12Ω
Total	12 V	3.3 A	3.64Ω

Parallel Circuit

Property
 Parallel Circuit

Current
Resistance
Total current flowing into and out of the junction point of the branches equals the sum of branch currents (Kirchhoff's Current Law). $I_{T}=I_{1}+I_{2}+I_{3}$ Total resistance is always less than the smallest resistance in the circuit.

$$
\mathrm{R}_{\mathrm{T}}=\frac{1}{1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}}
$$

Voltage $\quad V_{T}=V_{1}=V_{2}=V_{3}$

Kirchoff's Law

Current Law: The law states that as much current flows away from a point as flows toward it. (Parallel Circuit)

Resistor	\mathbf{V}	I	R
1	6 V	1.5 A	4Ω
2	6 V	0.75 A	8Ω
Total	6 V	2.25 A	2.67Ω

Parallel Circuit

$$
\begin{aligned}
& \mathrm{E}_{1}=10 \mathrm{~V} \\
& \mathrm{E}_{2}=20 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{T}}=1000 \Omega \\
& \mathrm{I}_{1}=5 \mathrm{~mA} \\
& \mathrm{I}_{2}=10 \mathrm{~mA}
\end{aligned}
$$

$V_{T}=30 \mathrm{~V}$
$I_{T}=\underline{0.03 \mathrm{~A}}$
$\mathrm{I}_{3}=\underline{0.015 \mathrm{~A}}$
Which Direction?

Counter-Clockwise

Resistor	V	l	R
$\mathbf{1}$	30 V	0.005 A	6000Ω
$\mathbf{2}$	30 V	0.01 A	3000Ω
3	30 V	0.015 A	2000Ω
Total	30 V	0.03 A	1000Ω

Parallel Circuit

Property	Series Circuit
Current	Total current flowing into and out of the junction point of the branches equals the sum of branch currents (Kirchhoff's Current Law). $I_{T}=I_{1}+I_{2}+I_{3}$
Resistance	Total resistance is always less than the smallest resistance in the circuit.
$R_{T}=\frac{1}{1 / R_{1}+1 / R_{2}+1 / R_{3}}$	

Parallel-Series Circuit

Resistor	\mathbf{V}	\mathbf{I}	\mathbf{R}	Resistor	\mathbf{V}	\mathbf{I}
$\mathbf{1}$			5Ω		\mathbf{R}	
$\mathbf{2}$		5Ω	3	20 V	2 A	10Ω
Total			10Ω	Total	20 V	6 A

Parallel-Series Circuit

Resistor	\mathbf{V}	\mathbf{l}	\mathbf{R}	1	3.4 V	0.17 A	20Ω
2			30Ω	2,3	3.2 V	0.17 A	18.75Ω
3			50Ω	4	3.4 V	0.17 A	20Ω
Total			18.75Ω	Total	10 V	0.17 A	58.75Ω

The Risks!

How can we use what we know to mitigate corrosion?

Sacrificial Anode System

Electrical Insulation / Isolation

Isolation devices are fittings or devices used metallic structures to break any paths between the structure and any metallic connectors. Weld ends, dielectric couplings, isolation unions, and bolted flange isolation kits are examples.

- Insulation is a form of resistance to current flow.
- Normally materials with high resistance are used for electrical insulation / isolation.
- Insulators should always measure "OL" or as
 an open circuit when using a conventional voltmeter.

Polarity

- Determines the direction of conventional current flow
- Determines which is the Cathode and which is the Anode.
- Instrument such as digital or analog meter will help in determine the polarity.

Copper will be more positive in comparison to the steel pipe.

Measuring electrical voltage (potential)

In order to measure voltage, no current goes through the meter

The meter is kept separate from the current flow.

12 V DC

Measuring electrical current

In order to measure current, all current must go through a meter

The meter is inserted and becomes part of the circuit.

Amp meter -

INDUCTION meter

Basic Electricity

