Pipe Coating Failures

Gregory C Hardig,
CPR Corrosion Protection Resources LLC
Pipeline Coating Failures
Corrosion Protection

Subsoil Exposure

➢ Coatings - Designed to protect the pipe surface from its external environment.
 - Adhesion
 - Thickness
 - Hardness
 - Dielectric Strength
Corrosion Protection

➢ Cathodic Protection-
 Designed to protect the pipe from corrosion should the coating be damaged or become disbonded from the pipe.

➢ Electrical current
 • -850 to 800 mv potential range (Coatings / CP)
 • Temperature
 • Soil resistivity
The “Supply Chain” is the sequential efforts of Engineers, Suppliers, Services and Installers. Each party has a well defined role to accomplish specific tasks that will result in a completed pipeline project.
Supply Chain

Project Sequence
- Design
- Manufacture
- Surface Preparation
- Coating
- Handling
- Storage
- Transportation
- Construction
Design

➢ Atmospheric Exposure
 - UV Degradation
 - Abrasion
 - Environmental
 - Airborne Contaminants
 - Structural Supports
 - Operating Temperatures
Design

➢ Subsoil Exposure
 - Operating Temperature
 - Cathodic Protection
 - Pipeline Insulation
 - pH / Moisture
 - Abrasion / Impact Resistance
 - Backfill Composition
 - Chemical Resistance
Design

- Immersion / Marine
 - Operating Temperature
 - Cathodic Protection
 - Water Resistance
 - Weight Coating
 - Resistance to Water
 - Fresh
 - Salt
 - Brackish
Design

➢ Cathodic Protection
 • Cathodic Disbondment
Cathodic Protection

- CP Shielding
 - Occurs after coating failure
 - Prevents CP current access to the steel
 - Limited to buried pipelines onshore.

- FBE
 - Current reaches water
 - pH raised >9
 - No significant corrosion
 - Non-shielding

- Shrink Sleeve
 - Current shielded from water
 - pH remains <9
 - Corrosion
 - Shielding

- RD-6™
 - Current reaches water
 - pH raised >9
 - No significant corrosion
 - Non-shielding
Fasteners Field Joints
- Nuts & Bolts
- Crevices
- Welds
Manufacture

➢ Fabrication
 • Rolling defects
 • Weld Spatter
 • Sharp edges
 • Surface defects
Manufacture

➢ Material Type
- Carbon Steel
- Galvanized Steel
- Aluminum
- Copper
- Ductile iron
- Concrete
Surface Preparation

➢ Decontamination
Surface Preparation

Surface Cleanliness

AUCSC
Appalachian Underground Corrosion Short Course
Surface Preparation

➢ Abrading - Abrasive
 • Surface Profile
 • Anchor Pattern
 • Mechanical Tooth

AUCSC
Appalachian Underground Corrosion Short Course
Surface Preparation

- Abrading - Abrasive
 - Surface Profile
 - Anchor Pattern
 - Mechanical Tooth
Surface Preparation

➢ Quality Control
 - Environmental Conditions
 - Air temperature
 - Relative humidity
 - Dew point
Surface Preparation

Quality Control

- Surface Conditions
 - Contamination
 - Weld defects
 - Profile
 - Too deep
 - Too shallow
Surface Preparation

➢ Quality Control
 ● Adhesion
Coating

➢ Coal Tar Enamel
 - Water resistant
 - Moisture resistant
 - Chemical resistant
 - Acid
 - Alkali
 - Petroleum products
 - Surface tolerant
 - Bacteria resistant
 - Dielectric strength
Coating

➢ Coal Tar Enamel
 ● Coating System
 • Coal Tar Enamel
 • Glass Reinforced
 ● Inner Wrap
 ● Outer Wrap- Saturated
 • Kraft Paper Protection
 ● UV Rays
Coating

➢ Curing
 - Function of time and temperature
 - Uncured coatings will absorb moisture
 • Amines- Epoxies
 • Isocyanates- PUR
 - FBE- Passivation
 • Chromate wash
 • Phosphate wash
 • Acid wash
Coating

➢ Quality Control
 • Pipe Temperature
 • Temple sticks
 • Infrared sensors (mixed results)
 • Dry Film Thickness (DFT)
 • Surface Temperature
 • Holiday detection
 • Traceability of pipe
 • Barcodes
 • Standardization
Handling

➢ Damage
 ● Lifting and Loading
 • Trailers
 • Trains
 • Vessels- Maritime
Handling

Equipment

- Fork Lifts
- Grippers
- Pipe Hooks
- Minimize Damage
 - Hydraulic Spreaders
 - Vacuum Lifters
Storage

➢ Stacking
 • Causes stresses on the piping.
 • Deforming the diameter of the pipe.
 • Stress is increased at every level
Storage

Stacking

- Causes stresses on the coating.
- Stacking- Abrasion and Impact damage where the pipes touch. (3 & 9 o’clock positions)
 - Pipe stacks should be blocked to prevent rolling.
Storage

➢ Environment
 - Soluble Salts
 - Chlorides
 - Nitrates
 - Sulfates
 - Dirt, Dust & Mud
 - Oil, Grease & Lubricants
 - Chemicals
 - Acids
 - Alkalines
Storage

➢ Exposure
 • UV Degradation
 • Chalking: Deterioration of the resin / binder because of UV exposure.

 Loss of plasticizers will make the coating brittle and eventually checking in the coating.
Transportation

➢ Damage
 • Abrasion from travel movement
 • Loading & Unloading
 • Handling
Transportation

Damage
- Supports and Stops
 - Abrasion and Impact
Transportation

➢ VDI 2700 Association of German Engineers
 • Manual- Securing of loads on road vehicles
Transportation

➢ Climate / Environment
Construction

➢ Handling
Construction

➢ Field Welds
 • Surface Preparation
 • Abrasive blast cleaning
 • Hand / Power tool cleaning
Construction

➢ Field Welds- Surface Preparation
 - Nace No. 2
 - SSPC SP 10
 - Minimum cleaning standard
Field Welds- Surface Preparation

- Surface Profile
 - 2.0- 4.0 mils
- Measurement method
 - Testex tape
Field Welds (HSS)
- Heat-Shrinkable Sleeves
 - 30 year history
 - Cross linking polyolefin.
 - Cured by “Electron irradiation”
- Polyethylene and Polypropylene coatings
- Epoxy primer is used for 3-layer systems
- Peel test - Adhesion and cure.
Construction (HSS)

18 in Oil Pipeline
➢ 3 layer Polyethylene
➢ In Line Inspection (ILI)
 • Corrosion 1st 15 km
➢ 131F Operating Temp
➢ Service- 15 yrs
➢ Wet, compacted sand pH 5.4
➢ HSS
 • Hot melt type / Epoxy Primer
 • Surface Prep Power tool
Construction (HSS)

18 in Oil Pipeline

➢ Massive disbonding of HSS
 ● Steel surface
 ● 3LPE coating system

➢ Significant corrosion
 ● Field joint
 ● Steel surface

➢ No significant corrosion at lower operating temperatures.
Construction (HSS)

18 in Oil Pipeline
➢ Longitudinal cracking at the 3 and 9 o’clock positions.
➢ Showed signs of thermal aging
 • Brittleness
 • Lack of flexibility
➢ Issues:
 • Storage conditions
 • Soil exposures
 • Service conditions
Construction (HSS)

- 16 in Oil Pipeline
- 3 layer Polyethylene
- In Line Inspection (ILI)
 - Severe external corrosion
 - Pitting- “Craters” at field joints
- 122F Operating Temp
- Service- 12 yrs
- Brackish w/ 2g/liter chlorides
- HSS
 - Hot melt type / Epoxy Primer
 - Surface Prep- Wire brush
 - Millscale on surface
 - Overlap 1 cm (~ 1.2 in)
Construction (HSS)

16 in Oil Pipeline

- Disbonding of HSS
 - Steel surface
 - 3LPE coating system
- Significant corrosion
 - Field joint
 - Steel surface
 - Salt crystals under HSS
- Disbondment fo coating system
Construction (HSS)

Causes of Disbondment

➢ Surface preparation
 - Minimum Near white blast

➢ Application
 - Fish mouths
 - Overlaps

➢ Service Conditions
 - Operating temperature
 - Soil conditions

➢ UV Degradation during storage.
Construction

➢ Field Welds- PUR
 - Liquid applied Polyurethane
 - Epoxy modified
 - Operating temperature 176 F
Construction

➢ Backfill Materials
- Select according to coating type
- Pipeline Research Council International Catalogue
 - No. L52208 July 2005
 - Smaller particles do less damage
 - Average 20 mm size produce the least amount of holidays
Internal Coatings

- Coating Selection
 - Chemical Resistance
 - Carbon Dioxide
 - Hydrogen Sulfide
 - Abrasion Resistance
 - Erosion
 - Impact Resistance
 - Temperature Resistance
 - VOC Requirements
 - Corrosion Under Insulation
 - CUI
Internal Coatings

- **Immersion Exposure**
 - Water / Moisture
 - Microbiologically Induced Corrosion (MIC)
 - Planktonic Bacteria
 - Sessile Bacteria
 - Sulfate Reducing
 - Anaerobic

Photo: Extensive tuberculation can discolor and contaminate water as well as result in greatly reduced water flow and pressure.
Internal Coatings

➢ Immersion Exposure
 - Abrasion Resistance
 • Impact
 • Sludge
 - Chemical Resistance
 - Inhibitors
 • Scavengers
 • Oxygen
 • Sulfide
 - Biocides- MIC Fighters
Internal Coatings

➢ Vapor Exposure
 • Hydrogen Sulfide H2S
 • Concrete and steel deterioration
Case History

➢ Water main 48 in.
 • Pre-stressed Concrete Cylinder Pipe PCCP
 • 25 years service
 • Wrapped with High strength reinforcement wire- externally
 • Coated with cement rich mortar
 • No Cathodic Protection
 • Backfill native soil
Case History

Water main 48 in.
- Failure location
 - 10 ft long
 - Along pipe wall
- Concrete coating deteriorated and spalled
- Reinforcement wires broke
- Exposed steel substrate to soil conditions
Case History

- Water main 48 in.
 - High sulfate levels
 - Water in soil
 - Corrosion of concrete, steel wires and steel pipe
 - Water pressure exceeded the strength of the deteriorated pipe
 - BURST!!
Coating Maintenance Program

1. Identify the service conditions
2. Coating selection
3. Coating specification
4. Identify inaccessible areas
5. Contractor capabilities
6. Coating inspection
7. Pre-job meeting
8. Teamwork-communication
9. Document all phases
10. Monitor performance after installation
The End