Fundamentals of Corrosion Mathematics and Electricity

Considerations

- This class concentrates on fundamental mathematical and electrical concepts
- All skills require practice regardless of what they are or how they're done
- To learn is to do
- By doing, it becomes easier

- Units
- Circuit Theory
- Electrical Formulas
- Series and Parallel Circuit Theory

- A unit is an object or thing regarded as stand alone and complete
- Can also be a component of a larger or more complex object or thing

Examples of Common Units of Length

Imperial System

- Inch (in)
- Foot (ft)
- Yard (yd)
- Mile (mi)

International System (SI)

- Millimeter (mm)
- Centimeter (cm)
- Meter (m)
- Kilometer (km)

Unit Nomenclature for US Money Denominations Macro Unit Fractional Unit

Two Dollars Five Dollars Ten Dollars Twenty Dollars Fifty Dollars One Hundred Dollars One Dollar

Divide

Multiply

Penny or Cent Nickel Dime Quarter Half-Dollar

Concept #1

Any number multiplied by the number 1 always equals the same number.

Examples:

5 * 1 = 5 354 * 1 = 3540.75 * 1 = 0.75

Examples:

5 * 1 * 1 = 5 354 * 1 * 1 * 1 = 3540.75 * 1 * 1 * 1 = 0.75

Concept #2

Any number divided by itself always equals 1.

Examples:

$$\frac{6}{6} = 1 \qquad \frac{87}{87} = 1 \qquad \frac{0.375}{0.375} = 1$$

Unit Nomenclature for US Money Denominations Unit

Elaboration on Concept #2 – Conversion Ratio

Elaboration on Concept #2 – Conversion Ratio

Units Make All The Difference – Conversion Ratio

The Unit that you want goes on top The Unit you have goes on the bottom

Example

We know there are 5280 feet in 1 mile

Conversion Ratio = 1 mile / 5280 ft

= 0.0001894 miles per ft **OR** 0.0001894 miles/ft

Units Make All The Difference – Conversion Ratio

Conversion Ratio = 0.0001894 miles/ft

Question

How many miles are in 52, 864 ft?

Units Make All The Difference – **Conversion Ratio**

Conversion Ratio = 0.0001894 miles/ft

We have feet and we want miles

Example

52,864 ft * 0.0001894 miles/ft

Units Make All The Difference – Conversion Ratio

Conversion Ratio = 1 mile / 5280 ft

We have feet and we want miles

Example

52,864 ft * 1 mile / 5280 ft

Units Make All The Difference – **Conversion Factor**

Conversion Ratio = 5280 ft /1 mile

We have miles and we want feet

Example – Conversion Applied Backward 52,864 ft * 5280 ft / 1 mi

Units Make All The Difference – Conversion Ratio

The Unit that you want goes on top The Unit you have goes on the bottom

Example – Conversion

We have dollars and we want quarters

Ratio = 4 Quarters per Dollar OR 4 Quarters / 1 Dollar

Units Make All The Difference – Conversion Ratio

How many quarters in \$37.75

Example – Conversion

Multiple Conversion Ratios

- 6.425 miles of pipeline
- Convert to a distance in mm
- We know the following:
 - 5280ft / 1 mile
 - 12in / 1 ft
 - 25.4mm / 1 in

$$6.425 \text{ prise} * \frac{5280 \text{ ft}}{1 \text{ prise}} * \frac{12 \text{ jrn}}{1 \text{ ft}} * \frac{25.4 \text{ mm}}{1 \text{ jrn}} = 10,340,035 \text{ mm}$$

$$\mathbf{OCCC}$$

$$\mathbf{$$

SI Units

The SI System and Layout

	Prefix	Symbol	Magnitude	Multiplier
	Tera	т	10 ¹²	x 1,000,000,000,000
	Giga	G	10 ⁹	x 1,000,000,000
Getting	Mega	М	10 ⁶	x 1,000,000
Getting Bigger	Kilo	к	10 ³	x 1000
330.	Hecto	н	10 ²	x 100
	Deka	Da	10 ¹	x 10
	Unit		1	x 1
	Duefin	Currench al		
	Prefix	Symbol	Magnitude	Multiplier
	Unit		1	x 1
Getting		_	_	-
Getting Smaller	Unit		1	x 1
Getting Smaller	Unit Deci	 d	1 10 ⁻¹	x 1 x 0.1
Getting Smaller	Unit Deci Centi	 d c	1 10 ⁻¹ 10 ⁻²	x 1 x 0.1 x 0.01
Getting Smaller	Unit Deci Centi Milli	 d c m	1 10 ⁻¹ 10 ⁻² 10 ⁻³	x 1 x 0.1 x 0.01 x 0.001

The SI System and Layout

Measurement	Unit	Symbol
Length	Meter	m
Mass	Gram	g
Volume	Liter	L
Time	Second	S
Voltage	Volt	V
Current	Ampere	А
Resistance	Ohm	Ω
Power	Watt	w

Electrical Measurement Terms

Voltage – Volt (V)	Current – Ampere (I)
 Named after Alessandro Volta (Italy) 	 Named after Andre Ampere (French)
 Similar in function to pressure 	 Similar in function to fluid flow
Resistance – Ohm (Ω)	Power – Watt (W)
 Resistance – Ohm (Ω) Named after Georg Ohm (Germany) 	 Power – Watt (W) Named after James Watt (Scotland)

Electrical Measurement Terms

Voltage – Volt (V)	Current – Ampere (I)
• kV = 1000V	• kA = 1000A
• mV = 0.001V <u>OR</u> 1000mV per Volt	• mA = 0.001A <u>OR</u> 1000mA per Amp
• uV = 0.0000001V <u>OR</u> 1000uV per mV	• uA = 0.000001A <u>OR</u> 1000uA per mA
Resistance – Ohm (Ω)	Power – Watt (W)
 GΩ = 1,000,000,000Ω <u>OR</u> 1000MΩ 	• GW = 1,000,000,000W <u>OR</u> 1000MW
 1 MΩ = 1,000,000Ω 	• MW = 1,000,000W <u>OR</u> 1000kW
 1 kΩ = 1000Ω 	• kW = 1000W
• $1 \text{ m}\Omega = 0.001\Omega \text{ OR} 1000 \text{m}\Omega \text{ per Ohm}$	• mW = 0.001W <u>OR</u> 1000mW per Watt
• $1 \text{ u}\Omega = 0.0000001\Omega \text{ OR 1000u\Omega per mV}$	• uW = 0.0000001W <u>OR</u> 1000uW per mW

Conversion Examples

$$-0.71A * \frac{1000mA}{1A} = -710mA$$

$$1.325kV * \frac{1000V}{1kV} = 1325V$$

$$956m\Omega * \frac{1\Omega}{1000m\Omega} = 0.956\Omega$$

$$1500W * \frac{1kW}{1000W} = 1.5kV$$

Review

Topics

- Skill requires practice
- Different types of units and their relationships
- How to derive a conversion ratio to achieve larger or smaller units of measure
- Established some electrical units of measure

Electric Circuits behave somewhat like fluid or pneumatic flow systems

Electrical Symbols

DC Voltage Source
$$E_s = 1.5V_{DC} - E_s = 6V_{DC} + E_s = 6V$$

R₁ = 60Ω

750

Current flow – may be represented with an

arrow _____ and an "I"

Resistance – may be represented with zig-zag image or a box with or without a resistance value. Usually labeled R

Series Circuit - Water vs. Electricity

Fluids

Pressure Drop

- Pounds per Square Inch
- Difference between one side of flow resistance and the other

• Flow

- Gallons per minute
- Measured by Diverting the Fluid Flow

Electricity

- Voltage Drop
 - Volts
 - Difference between one side of flow resistance and the other
- Current
 - Amps
 - Measured by Diverting the Current

Circuit Breakers

- Two Types of Circuit Breakers
 - "Normal" Circuit Breaker Breaks the circuit when the current exceeds the rating of the circuit breaker (short circuit)
 - "Ground Fault" Circuit Breaker Breaks the circuit when the "Hot Side" (Black) current is <u>different</u> than the "Neutral" (White) side of the circuit

Resistors

- Resistors are generally provided with two basic pieces of information
 - The size of the resistor in ohms
 - The wattage or maximum power the resistor can dissipate before it starts to fail

The Basic Electricity Formulas

Ohms Law

A potential of 1 Volt across a resistance of 1 Ohm causes 1 ampere of current to flow

> V = I * R I = V / R R = V / I

*V can be replaced with E

The Basic Electricity Formulas

Ohms Law

- Using the triangle
- Cover the unknown variable
- Known variables will be in the appropriate configuration

V = I * R I = V / R R = V / I

The Basic Electricity Formulas

Joules Basic Power Triangle

A potential of 1 Volt across a resistance of 1 Ohm causes 1 ampere of current to flow and dissipates 1 Watt of Power

> P = V * I I = P / V V = P / I

Appalachian Underground Corrosion Short Course

*V can be replaced with E

The Basic Electricity Formulas

Units, Units, Units

- For ease of calculation
- <u>Always</u> convert units to Volts, Amps, Ohms, & Watts
- Convert millivolts, milliamps, kilohms, etc. to the parent unit

The Formulas Applied – Example 1

- The voltage (V_{R1}) across the resistance is 1 Volt
- The resistance (R₁) is $1k\Omega$ or 1000Ω
- What is the current through R₁?
- What is the minimum wattage for R₁ that's required?

P_{R1} = V_{R1} * I_T
P_{R1} = 1V * 0.001A
P_{R1} = 0.001W <u>or</u> 1mW

The Formulas Applied – Example 2

The Formulas Applied – Example 4

The Formulas Applied – Example 5 (Common Error)

The Formulas Applied – Example 6

Series Circuit Analysis

- A series circuit has all elements connected "end to end" forming a single loop with the power source
- Current (I_T) is the same through all elements
- Voltage Drops (V_{R1}, V_{R2}, etc.) may be different
- The sum of all voltage drops = the source voltage
- $V_{R1} + V_{R2} + V_{R3} + \dots = E_{S}$

Appalachian Underground Corrosion Short Course

 Total or Equivalent circuit resistance (R_T or R_{EQ}) = the sum of all resistances

> Total resistance (R_T) is always **larger** than the largest resistance

Parallel Circuit

- A parallel circuit has all elements "side by side" forming multiple loops with the power source
- Total Current (I_T) is the sum of currents through all elements
- Voltage Drops (V_{R1}, V_{R2}, etc.) are the same
- $I_{R1} + I_{R2} + I_{R3} + \dots = I_{T}$
- Total or Equivalent circuit resistance (R_T or R_{EQ}) = the inverse of the inverse sum of all resistances

$$R_{\tau} = \frac{1}{1}$$

Parallel Circuit

- Each parallel current is a different magnitude
- Voltage across each parallel path or resistance is the same

•
$$I_{T} = I_{R1} + I_{R2} + I_{R3}$$

•
$$R_T = \frac{1}{((1/R_1) + (1/R_2) + (1/R_3))}$$

$$E_{s} = V_{R1} = V_{R2} = V_{R3}$$

$$E_{s} = V_{R1} = V_{R2} = V_{R3}$$

$$V_{R1} = V_{R2} = V_{R3}$$

AUCSC(

Es

Appalachian Underground Corrosion Short Course

Total resistance (R_T) is always **smaller** than the smallest resistance

The Formulas Applied - Example 8

- The total circuit current (I_T) is 6mA
- The current through R₁ is 1mA & R₂ is 5mA
- What is the value of the resistances R₁ & R₂ & R₇
- How would you verify R_τ?

• $R_1 = V_{R1} / I_{R1}$ • $R_1 = 6V / 0.001A = 6k\Omega$

•
$$R_2 = V_{R2} / I_{R2}$$

• $R_2 = 6V / 0.005A = 1.2k\Omega$

•
$$R_T = 1/((1/R_1)+(1/R_2))$$

•
$$R_{T} = 1/(0.000167s+0.000833s)$$

$$R_{T} = 1k\Omega$$

Thank You!

Brought to you by:

Michael Baxter

