Fundamentals of Corrosion Mathematics and Electricity

Appalachian Underground Corrosion Short Course

Considerations

- This class concentrates on fundamental mathematical and electrical concepts
- All skills require practice regardless of what they are or how they're done
- To learn is to do
- By doing, it becomes easier

Agenda

- Units
- Circuit Theory
- Electrical Formulas
- Series and Parallel Circuit Theory

Units

- A unit is an object or thing regarded as stand alone and complete
- Can also be a component of a larger or more complex object or thing

Appalachian Underground Corrosion Short Course

Units

Examples of Common Units of Length

Imperial System

- Inch (in)
- Foot (ft)
- Yard (yd)
- Mile (mi)

International System (SI)

- Millimeter (mm)
- Centimeter (cm)
- Meter (m)
- Kilometer (km)

Units

Unit Nomenclature for US Money Denominations

 Macro Unit Fractional Unit

Units

Concept \#1

Any number multiplied by the number 1 always equals the same number.

Examples:

Examples:

$$
\begin{gathered}
5 * 1=5 \\
354 * 1=354 \\
0.75 * 1=0.75
\end{gathered}
$$

$$
\begin{array}{r}
5 * 1 * 1=5 \\
354 * 1 * 1 * 1=354 \\
0.75 * 1 * 1 * 1 * 1=0.75
\end{array}
$$

Units

Concept \#2

Any number divided by

 itself always equals 1 .
Examples:

$$
\frac{6}{6}=1 \quad \frac{87}{87}=1 \quad \frac{0.375}{0.375}=1
$$

Appalachian Underground Corrosion Short Course

Units

Unit Nomenclature for US Money Denominations
Unit

Unit
\(\left.\begin{array}{r}Two Dollars - (2)

Five Dollars - (5)

Ten Dollars - (10)

Twenty Dollars - (20)

Fifty Dollars - (50)

One Hundred Dollars - (100)\end{array}\right] \quad\)| Multiply Divide |
| :--- |\quad| (100) - Penny or Cent |
| :--- |
| (20) - Nickels |
| (10) - Dimes |
| (4) - Quarter |
| (2) - Half-Dollar |

Units

Elaboration on Concept \#2 - Conversion Ratio

Appalachian Underground Corrosion Short Course

Units

Elaboration on Concept \#2 - Conversion Ratio

Appalachian Underground Corrosion Short Course

Units

Units Make All The Difference - Conversion Ratio

The Unit that you want goes on top
The Unit you have goes on the bottom

Example

We know there are 5280 feet in 1 mile
Conversion Ratio $=1$ mile $/ 5280 \mathrm{ft}$
$=0.0001894$ miles per ft OR 0.0001894 miles/ft

Appalachian Underground Corrosion Short Course

Units

Units Make All The Difference - Conversion Ratio

Conversion Ratio $=0.0001894$ miles $/ \mathrm{ft}$

Question

How many miles are in $52,864 \mathrm{ft}$?

Appalachian Underground Corrosion Short Course

Units

Units Make All The Difference - Conversion Ratio

Conversion Ratio $=0.0001894$ miles $/ \mathrm{ft}$

We have feet and we want miles

Example
$52,864 \mathrm{ft}$ * 0.0001894 miles/ft

Units

Units Make All The Difference - Conversion Ratio

Conversion Ratio $=1$ mile $/ 5280 \mathrm{ft}$
We have feet and we want miles
Example
$52,864 \mathrm{ft}$ * 1 mile / 5280 ft
52,864 ft * 1 miles
$=10.0124$ miles

Units

Units Make All The Difference - Conversion Factor

Conversion Ratio $=5280 \mathrm{ft} / 1$ mile

We have miles and we want feet

Example - Conversion Applied Backward

 $52,864 \mathrm{ft}$ * $5280 \mathrm{ft} / 1 \mathrm{mi}$
Units

Units Make All The Difference - Conversion Ratio

The Unit that you want goes on top
The Unit you have goes on the bottom

Example - Conversion

We have dollars and we want quarters

> Ratio = 4 Quarters per Dollar OR

4 Quarters / 1 Dollar

Units

Units Make All The Difference - Conversion Ratio

How many quarters in $\$ 37.75$
Example - Conversion

Units

Multiple Conversion Ratios

- 6.425 miles of pipeline
- Convert to a distance in mm
- We know the following:
-5280ft / 1 mile
- $12 \mathrm{in} / 1 \mathrm{ft}$
- $25.4 \mathrm{~mm} / 1 \mathrm{in}$

SI Units

The SI System and Layout

Getting Bigger

Getting Smaller

Prefix	Symbol	Magnitude	Multiplier
Tera	T	10^{12}	x 1,000,000,000,000
Giga	G	10^{9}	x 1,000,000,000
Mega	M	10^{6}	x 1,000,000
Kilo	K	10^{3}	x 1000
Hecto	H	10^{2}	$\times 100$
Deka	Da	10^{1}	x 10
Unit	--	1	x 1
Prefix	Symbol	Magnitude	Multiplier
Unit	--	1	x 1
Deci	d	10^{-1}	x 0.1
Centi	c	10^{-2}	x 0.01
Milli	m	10^{-3}	x 0.001
Micro	u	10^{-6}	x 0.000001
Nano	n	10^{-9}	x 0.000000001
Pico	p	10^{-12}	x 0.000000000001

SI Measurement Units

The SI System and Layout

Measurement	Unit	Symbol
Length	Meter	m
Mass	Gram	g
Volume	Liter	L
Time	Second	s
Voltage	Volt	V
Current	Ampere	A
Resistance	Ohm	$\mathbf{\Omega}$
Power	Watt	w
Temperature	Degree	C or K

SI Measurement Units

Electrical Measurement Terms

Voltage - Volt (V)

- Named after Alessandro Volta (Italy)
- Similar in function to pressure

Resistance - Ohm (Ω)

- Named after Georg Ohm (Germany)
- Similar in function to valve

Current - Ampere (I)

- Named after Andre Ampere (French)
- Similar in function to fluid flow

Power - Watt (W)

- Named after James Watt (Scotland)
- Identical in function to work

SI Measurement Units

Electrical Measurement Terms

$$
\begin{array}{|l|l}
\hline \text { Voltage - Volt (V) } & \text { Current - Ampere (I) }
\end{array}
$$

- $k V=1000 \mathrm{~V}$
- $\mathrm{mV}=0.001 \mathrm{~V}$ OR 1000 mV per Volt
- $u V=0.0000001 V \underline{O R} 1000 u V$ per $m V$

Resistance - Ohm (Ω)

- $G \Omega=1,000,000,000 \Omega$ OR $1000 \mathrm{M} \Omega$
- $1 \mathrm{M} \Omega=1,000,000 \Omega$
- $1 \mathrm{k} \Omega=1000 \Omega$
- $1 \mathrm{~m} \Omega=0.001 \Omega \underline{\text { OR } 1000 \mathrm{~m} \Omega \text { per Ohm }}$
- $1 u \Omega=0.0000001 \Omega \underline{O R} 1000 u \Omega$ per mV
- $k A=1000 A$
- $m A=0.001 \mathrm{~A} \underline{\text { OR } 1000 m A \text { per Amp }}$
- $u A=0.000001 \mathrm{~A} \underline{O R} 1000 u A$ per mA

> Power - Watt (W)

- $\mathrm{GW}=1,000,000,000 \mathrm{~W}$ OR 1000MW
- $\mathrm{MW}=1,000,000 \mathrm{~W}$ OR 1000 kW
- $k W=1000 W$
- $m W=0.001 W$ OR 1000 mW per Watt
- $u W=0.0000001 W$ OR $1000 u W$ per $m W$

SI Measurement Units

Conversion Examples

Unit you want
Unit you have

$$
\begin{array}{ll}
-0.71 A * \frac{1000 \mathrm{~mA}}{1 \mathrm{~A}}=-710 \mathrm{~mA} & 1.325 \mathrm{kV} * \frac{1000 \mathrm{~V}}{1 \mathrm{kV}}=1325 \mathrm{~V} \\
956 \mathrm{~m} \Omega * \frac{1 \Omega}{1000 \mathrm{~m} \Omega}=0.956 \Omega & 1500 \mathrm{~W} * \frac{1 \mathrm{~kW}}{1000 \mathrm{~W}}=1.5 \mathrm{kV}
\end{array}
$$

Review

- Topics

- Skill requires practice
- Different types of units and their relationships
- How to derive a conversion ratio to achieve larger or smaller units of measure
- Established some electrical units of measure

Appalachian Underground Corrosion Short Course

Circuits

Electric Circuits behave somewhat like fluid or pneumatic flow
systems

Circuits

Electrical Symbols

DC Voltage Source (Battery)

Current flow - may be represented with an arrow \longrightarrow and an " l "

Resistance - may be represented with zig-zag image or a box with or without a resistance value. Usually labeled R

Circuits

Series Circuit - Fluid vs. Electricity

- Pressure around circuit changes
- Flow rate remains constant

- Pump Pressure ~ Source Voltage
- Water Flow ~ Electrical Current
- Valve ~ Resistor

- Voltage around circuit changes
- Current flow remains constant

Circuits

Series Circuit - Water vs. Electricity

Fluids

- Pressure Drop
- Pounds per Square Inch
- Difference between one side of flow resistance and the other
- Flow
- Gallons per minute
- Measured by Diverting the Fluid Flow

Electricity
 - Voltage Drop
 - Volts
 - Difference between one side of flow resistance and the other

- Current
- Amps
- Measured by Diverting the Current

Circuits

Simple Series Circuit

Electrical current flows from battery (+) terminal through the light bulb filament back to the battery (-) terminal.

Circuits

Voltage Measurement

- Measure difference in voltage across the "load" or "voltage drop"
- Circuit unbroken
- Voltmeter has very high resistance (10M Ω)

$$
\mathrm{V}_{\mathrm{R} 2}=6 \mathrm{~V}_{\mathrm{DC}}
$$

Circuits

Current Measurement

- To measure current, current must flow through the meter

$$
E_{S}=12 V_{D C}
$$

$$
R_{1}=R_{2}=12 \Omega
$$

- Circuit broken to insert meter
- Ammeter has very low resistance

$\mathrm{R}_{1}=$
12Ω
$\mathrm{R}_{2}=$
12Ω

Circuits

Circuit Breakers

- Two Types of Circuit Breakers
- "Normal" Circuit Breaker - Breaks the circuit when the current exceeds the rating of the circuit breaker (short circuit)
- "Ground Fault" Circuit Breaker - Breaks the circuit when the "Hot Side" (Black) current is different than the "Neutral" (White) side of the circuit

Appalachian Underground Corrosion Short Course

Circuits

Resistors

- Resistors are generally provided with two basic pieces of information
- The size of the resistor in ohms
- The wattage or maximum power the resistor can dissipate before it starts to fail

10 Watt, 1Ω
10wised

100 Watt, 1Ω

The Basic Electricity Formulas

Ohms Law

A potential of 1 Volt across a resistance of 1 Ohm causes 1 ampere of current to flow

$$
\begin{aligned}
& V=I * R \\
& I=V / R \\
& R=V / I
\end{aligned}
$$

* V can be replaced with E

The Basic Electricity Formulas

- Using the triangle
- Cover the unknown variable
- Known variables will be in the appropriate configuration

Ohms Law

The Basic Electricity Formulas

Joules Basic Power Triangle

A potential of 1 Volt across a resistance of 1 Ohm causes
1 ampere of current to flow and dissipates 1 Watt of Power

$$
\begin{aligned}
& P=V * I \\
& I=P / V \\
& V=P / I
\end{aligned}
$$

* V can be replaced with E

The Basic Electricity Formulas

Units, Units, Units

- For ease of calculation
- Always convert units to Volts, Amps, Ohms, \& Watts
- Convert millivolts, milliamps, kilohms, etc. to the parent unit

Circuit Analysis

The Formulas Applied - Example 1

- The voltage $\left(\mathrm{V}_{\mathrm{R} 1}\right)$ across the resistance is 1 Volt
- The resistance $\left(R_{1}\right)$ is $1 \mathrm{k} \Omega$ or 1000Ω
- What is the current through R_{1} ?
- What is the minimum wattage for R_{1} that's required?

- $I_{T}=V_{R 1} / R_{1}$
- $I_{T}=1 \mathrm{~V} / 1000 \Omega$
- $I_{T}=0.001 \mathrm{~A}$ or 1 mA

- $\mathrm{P}_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{R} 1} * \mathrm{I}_{\mathrm{T}}$
- $P_{R 1}^{R 1}=1 V^{R 1} * 0.001 \mathrm{~A}$
- $P_{R 1}^{R 1}=0.001 \mathrm{~W}$ or 1 mW

Circuit Analysis

The Formulas Applied - Example 2

- The voltage ($\mathrm{V}_{\mathrm{R} 1}$) across the resistance is 10.5 Volts
- The resistance $\left(R_{1}\right)$ is 5Ω
- What is the current through R_{1} ?
- What is the minimum wattage for R_{1} that's required?

- $I_{T}=V_{R 1} / R_{1}$
- $I_{T}^{T}=10.5 \mathrm{~V}^{1} / 5 \Omega$
- $I_{T}=2.1 \mathrm{~A}$

$\begin{aligned} \text { - } & \mathrm{P}_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{R} 1}{ }^{*} \mathrm{I}_{\mathrm{T}} \\ \text { - } & \mathrm{P}_{\mathrm{R} 1}=10.5 \mathrm{~V}^{*} * 2.5 \mathrm{~A} \\ \text { - } & \mathrm{P}_{\mathrm{R} 1}=26.25 \mathrm{~W}\end{aligned}$

Circuit Analysis

The Formulas Applied - Example 4

- The total circuit current $\left(I_{T}\right)$ is 100 mA
- The resistance of R_{1} is 1.5 Ω
$E_{S}=? V_{D C}$
- What is the voltage across the resistance R_{1} ?
- How many watts are being dissipated across R_{1} ?

$\begin{aligned}-V_{R 1} & =R_{1}{ }^{*} I^{T} \\ -V^{R 1} & =1.5 \Omega^{T} * 0.1 \mathrm{~A} \\ -V_{R 1} & =0.15 \mathrm{~V}\end{aligned}$

$\begin{aligned} & \text { - } P_{R 1}=V_{R 1} * I_{T} \\ & \text { - } P_{R 1}=0.15 V^{*} * 0.1 \mathrm{~A} \\ & \text { - } P_{R 1}=0.015 \mathrm{~W} \text { or } 15 \mathrm{~mW}\end{aligned}$

Circuit Analysis

The Formulas Applied - Example 5 (Common Error)

- The total circuit current $\left(I_{T}\right)$ is 100 mA
- The resistance of R_{1} is 1.5 Ω

$$
E_{S}=? V_{D C}
$$

- What is the voltage across the resistance R_{1} ?
- How many watts are being dissipated across R_{1} ?

- $V_{R 1}=R_{1}{ }^{*} I_{T}$
- $V_{R 1}=1.5 * 100$
- $\mathrm{V}_{\mathrm{R} 1}=150 \mathrm{~V}$

- $P_{R 1}=V_{R 1} * I_{T}$
- $P_{R 1}^{R 1}=150 V^{*} * 100 \mathrm{~A}$
- $P_{R 1}^{R 1}=15,000 \mathrm{~W}$

Circuit Analysis

The Formulas Applied - Example 6

- The total circuit current $\left(I_{T}\right)$ is 2.5 mA
- The voltage across R_{1} is 2.5 V
- What is the value of the resistance R_{1} ?
- How many watts are being dissipated across R_{1} ?

- $\mathrm{R}_{1}=\mathrm{VR} / \mathrm{I}_{\mathrm{T}}$
- $\mathrm{R}_{1}=2.5 \mathrm{~V} / 2.5 \mathrm{~mA}$
- $R_{1}=1000 \Omega$

- $\mathrm{P}_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{R} 1}{ }^{*} \mathrm{I}_{\mathrm{T}}$
- $P_{R 1}^{R 1}=2.5 \mathrm{~V} *^{\top} 2.5 \mathrm{~mA}$
- $P_{R 1}^{R 1}=0.00625 \mathrm{~W}$ or 6.25 mW

Circuit Analysis

The Formulas Applied - Example 7

$$
\begin{aligned}
\mathrm{R}_{1}=? \Omega & \mathrm{R}_{2}=? \Omega \\
\mathrm{~V}_{\mathrm{R} 1}=2.5 \mathrm{~V}_{\mathrm{DC}} & \mathrm{~V}_{\mathrm{R} 2}=? \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

- The total circuit current $\left(I_{T}\right)$ is 1 A
- The voltage across R_{1} is 2.5 V
- What is the value of the resistance R_{2} ?
- How many watts are

$$
\mathrm{E}_{\mathrm{S}}=5 \mathrm{~V}_{\mathrm{DC}}
$$

- $R_{1}=V R_{1} / I_{T}$
- $\mathrm{R}_{1}=2.5 \mathrm{~V} / 1 \mathrm{~A}$
- $R_{1}=2.5 \Omega$
- $V_{R 2}=E_{S}-V_{R 1}$
- $V_{R 2}^{R 2}=5 \mathrm{~V}-2.5 \mathrm{~V}$
- $V_{R 2}=2.5 \mathrm{~V}$
- $V_{R 1}=V_{R 2} ; R_{1}=R_{2}$
- $R_{2}^{R 1}=2.5 \Omega$
- $P_{R 2}=V_{R 1}{ }^{*} I_{\top}$
- $P_{R 2}=2.5 V *^{\top} 1 \mathrm{~A}$
- $P_{R 2}^{R 2}=2.5 \mathrm{~W}$

Circuit Analysis

Series Circuit Analysis

- A series circuit has all elements connected "end to end" forming a single loop with the power source
- Current $\left(I_{T}\right)$ is the same through all elements
- Voltage Drops ($\mathrm{V}_{\mathrm{R} 1}, \mathrm{~V}_{\mathrm{R} 2}$, etc.) may be different
- The sum of all voltage drops = the source voltage
- $\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{R} 2}+\mathrm{V}_{\mathrm{R} 3}+\ldots . .=\mathrm{E}_{\mathrm{S}}$
- Total or Equivalent circuit resistance $\left(R_{T}\right.$ or $\left.R_{E Q}\right)=$ the sum of all resistances

Circuit Analysis

Parallel Circuit

- A parallel circuit has all elements "side by side" forming multiple loops with the power source
- Total Current $\left(I_{T}\right)$ is the sum of currents through all elements
- Voltage Drops ($\mathrm{V}_{\mathrm{R} 1}, \mathrm{~V}_{\mathrm{R} 2}$, etc.) are the same
- $I_{R 1}+I_{R 2}+I_{R 3}+\ldots . .=I_{T}$
- Total or Equivalent circuit resistance $\left(\mathrm{R}_{\mathrm{T}}\right.$ or $\left.\mathrm{R}_{\mathrm{EQ}}\right)=$ the inverse of the inverse sum of all resistances

Circuit Analysis

Parallel Circuit

- Each parallel current is a different magnitude
- Voltage across each parallel path or resistance is the same
- $I_{T}=I_{R 1}+I_{R 2}+I_{R 3}$
- $R_{T}=\frac{1}{\left(\left(1 / R_{1}\right)+\left(1 / R_{2}\right)+\left(1 / R_{3}\right)\right)}$
- $\mathrm{E}_{\mathrm{S}}=\mathrm{V}_{\mathrm{R} 1}=\mathrm{V}_{\mathrm{R} 2}=\mathrm{V}_{\mathrm{R} 3}$

Total resistance $\left(R_{T}\right)$ is always smaller than the smallest resistance

Circuit Analysis

The Formulas Applied - Example 8

- The total circuit current $\left(I_{T}\right)$ is 6 mA
- The current through R_{1} is $1 \mathrm{~mA} \& \mathrm{R}_{2}$ is 5 mA
- What is the value of the resistances $R_{1} \& R_{2} \& R_{T}$
- How would you verify R_{T} ?
- $\mathrm{R}_{1}=\mathrm{V}_{\mathrm{R} 1} / \mathrm{I}_{\mathrm{R} 1}$
- $R_{1}^{1}=6 \mathrm{~V}^{\mathrm{R} 1} / 0.0 \mathrm{R} 1 \mathrm{O} 1 \mathrm{~A}=6 \mathrm{k} \Omega$
- $R_{2}=V_{R 2} / I_{R 2}$
- $R_{2}^{2}=6 \mathrm{~V}^{\mathrm{R} 2} / 0.005 \mathrm{~A}=1.2 \mathrm{k} \Omega$
- $R_{T}=1 /\left(\left(1 / R_{1}\right)+\left(1 / R_{2}\right)\right)$
- $R_{T}=1 /(0.000167 s+0.000833 s)$
- $\mathrm{R}_{\mathrm{T}}=1 \mathrm{k} \Omega$
- $R_{T}=E_{S} / I_{T}$

Thank You!

Brought to you by:

Michael Baxter

FIELD SERVICES

Appalachian Underground Corrosion Short Course

