Cathodic Protection Measurement Basics

Michael J. Placzek, P.E. Senior Engineer Ark Engineering and Field Services

CP Measurements

- Pipe-To-Soil Potentials
- CP Current Flow
- Resistance
- Rectifier Readings

Voltmeter

- Digital, Analog, Computerized
- High Input Impedance
- Rugged

Lead Wires

- Tight Connections
- Secure To Structure
- Low Resistance As Possible

Reference Electrode Types

- Copper-Copper Sulfate (Most Common)
- Silver-Silver Chloride (Offshore Salt Water)
- Zinc Metal (Rough Conditions)
- Lead-Lead Chloride (Lead Sheathed Cables)
- Calomel (Hg-HgCl₂) (Laboratory Use)
- Hydrogen Cell (Laboratory Use)

- To Maintain Criteria of SP-0169
 - Cu-CuSO₄ (-) 0.850 V
 - Ag-AgCl (Sat KCl) {4.6M} (-) 0.733 V
 - Ag-AgCl (KCl @ 3.5M) (-) 0.739 V
 - Ag-AgCl (KCl @ 1.0M) (-) 0.756 V
 - Ag-AgCl (Seawater) (-) 0.784 V
 - Zinc Metal (+) 0.228 V
- Be Very Careful With Ag-AgCl References.
 The KCl Concentrations Shift the Potential

- Cu-CuSO₄ Reference Electrode
 - Temperature Sensitive
 - Copper-Copper Sulfate Ref: 0.5 mV per °F
 - Shift Positive When Colder
 - Contaminant Free
 - Clean Bar and Tip
 - Clear Solution
 - Saturated Solution
 - Distilled Water with Blue Crystals Left Over

Position

- Directly Over Structure
- Closer The Better But Don't Touch Structure
- Good Electrolyte Contact
 - Tip Contact to Ground
 - Thick Layers of Crushed Rock
 - Watch out for Unknowns like:
 - Geoplastic sheets under stone
 - Asphalt layers under concrete pavement (old roads)
 - Paved Over Trolley Tracks (Old Cities)

Sign Convention

Voltmeter (-) Lug	Voltmeter (+) Lug	Sign Convention
Structure	Half Cell	0.850
Half Cell	Structure	(-) 0.850

CP Current Flow

- Direct Readings
 - Inconvenient
 - Slow
 - Dangerous
 - Meter in Series with Circuit
 - Off Too Long
 - Sway Readings
- Shunt Readings
 - Accurate and Faster
 - Voltmeter Across Known Resistance

CP Current Flow

 Shunt Readings Rated in Ohms 0.001 Ohm: 1 mV = 1 Amp 25 Amp Max **0.01 Ohm: 1 mV = 0.1 Amp 8 Amp Max** 0.1 Ohm: 1 mV = 0.01 Amp 2 Amp Max Shunt Readings By Proportion 50 mV = 50 Amps 1 mV = 1 Amp50 mV = 100 Amps1 mV = 2 Amps100 mV = 100 Amps 1 mV = 1 Amp50 mV = 60 Amp1 mV = 1.2 Amps

CP Current Flow

Resistance

- Direct Readings
 - Isolate Circuit
 - Turn Off Power
- Calculated
 - Known V & Known I
 - Calculate: R = V / I
- Other Method
 - B3 Series Meter

Rectifier Readings

- AC Input
 - Voltage at Disconnect or Behind Breaker
 - Current by Clamp-On Ammeter
 - Power = (3600 x Kh x N) / T
- AC Throughput
 - Voltage Across Main Lugs of Taps
- DC Output
 - Voltage Across the Output Lugs
 - Current: Voltage Across the Shunt
- Efficiency
 - Power Out / Power In