Data Integration

By: Elizabeth Nicholson, B. Eng, CP-3 Cathodic Technology Limited

Data Integration

- Data integration involves combining data from different sources and providing users with a unified view of these data.
- This is the backbone of any pipeline information management program
- This presentation will focus on data for corrosion through the ECDA process

ECDA Data

- External Corrosion Direct Assessment is a process to continually evaluate your structure / pipeline and ensure it remains free from corrosion
- It requires accurate record keeping and knowledge of your system

Pipeline Information

Important Information

- Pipeline history
 - Installation date & method
 - Material & coating
- System inventory
- Know where your pipeline is, maps, GPS, etc.
- Operation & maintenance history



Inventory Your System

- Test Stations
- Casings
- Bonds
- Rectifiers
- Insulated flanges
- Sleeves
- Sacrificial anodes
- Etc.

Mapping Your Pipeline

Pipeline Location

- Use a pipe locator for accurate location
- Pipe to soil data can be correlated with other test data
- GPS and available sub-meter systems can be used to map the pipe

High Consequence Areas

- Population density
- Sensitive environmental areas
- Foreign crossings

Operating History

- What product & pressure
- Leak history
- Maintenance work & digs
- Repair work

Personnel

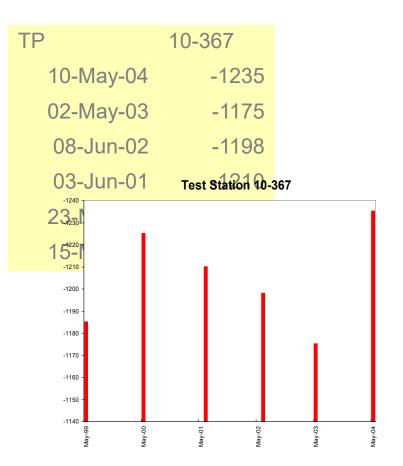
- Sometimes the field guys know things the office guys don't.
 - How many times that area has been dug up
 - Were anodes installed directly to the pipe?
 - Landowner issues

Test Results

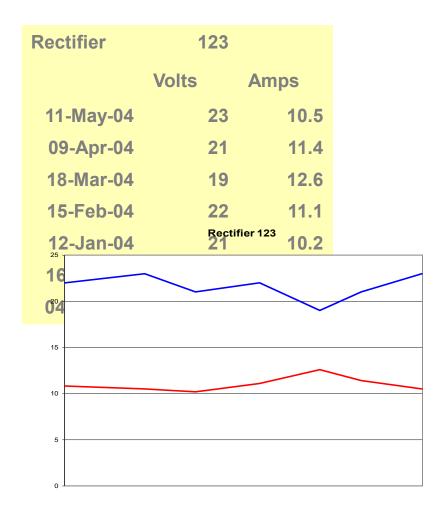
Test Results

- There are a number of ways to monitor the corrosion potential of a pipeline;
- Test station surveys
- Rectifier logs
- Close Interval Potential Surveys
- Voltage Gradient Surveys (DCVG, ACVG, PCM, Pearson)
- Internal inspection tools (Pigs wall thickness)
- Physical inspection from digs
- Corrosion coupons

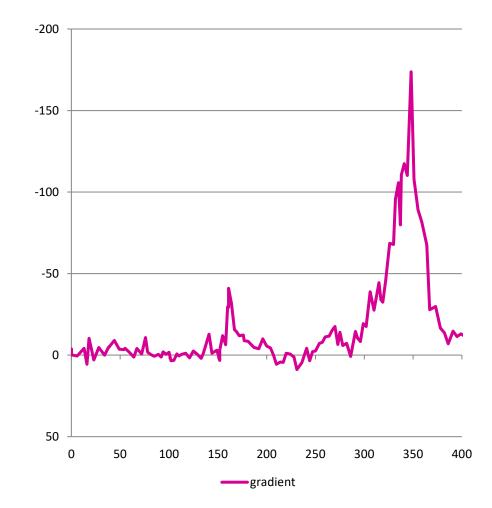
Modern Equipment


- Digital
- GPS integrated
 - Synchronization
 - Location, date, time
- Custom comments
- No more handwritten notes
 - Transcription errors
 - 'Coffee shop' readings

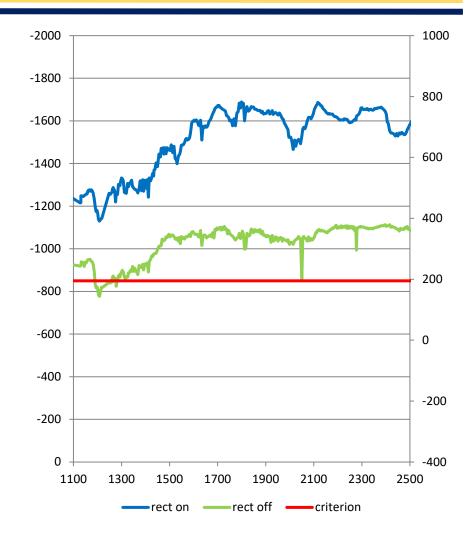
Test Station Surveys


- Performed on a regular basis
- When compared with prior readings, changes to the CP are seen

Rectifier Logs

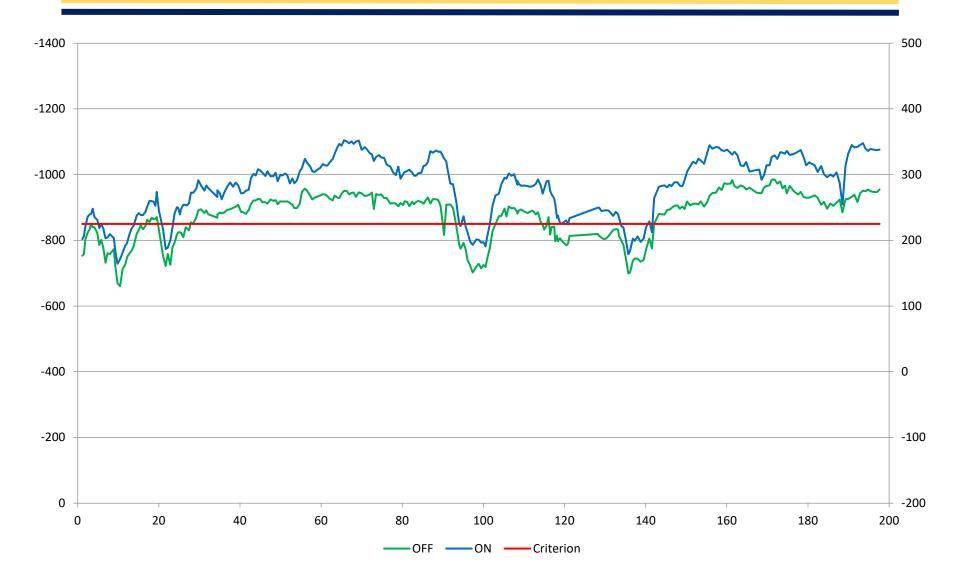

- Obtained by field crews or through remote monitoring
- Graphing the data over time can reveal trends

Voltage Gradient Surveys

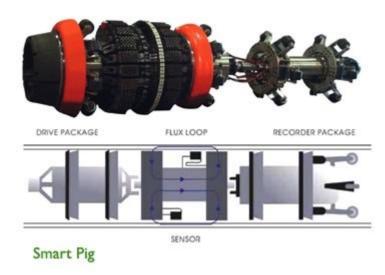

- Provide indication of coating damage
- Direct Current
 - DCVG
- Alternating Current
 - ACVG
 - PCM
 - Pearson

CIPS Surveys

- Close Interval Potential Survey records the level of CP along a pipeline
- Used with NACE SP0169 criterion
- Confirm if Cathodic Protection is adequate


CIPS Survey Equipment

- Close Interval Potential Survey, also called CIS – Close Interval Survey
- Walk the pipeline & record pipe to soil voltage every 3 to 10 feet
- Digitally records pipe to soil voltages



CIPS Data Graph

Internal Inspection

- Inline inspection tools (smart pigs) can be used to monitor the wall thickness of a pipeline
- Changes in wall thickness can indicate a corrosion problem

Correlation Digs

- Dig results are recorded
 - Pipe to soil potential
 - pH of soil
 - Size & type of damage
 - Coating condition
- Compared with general knowledge of the pipeline

Combining Data

Integrated CIPS & DCVG

- CIPS and DCVG surveys can be undertaken simultaneously for increased accuracy
- Same time, soil conditions, equipment



Combined CIPS + DCVG Surveys

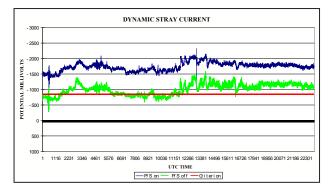
- The combined data makes it easier to assess the requirement for mitigation
- Coating defects that result in unprotected pipe should be repaired
- CIPS + DCVG not only point out the coating defects but the areas where corrosion is likely occurring.

Combined CIPS + DCVG Surveys

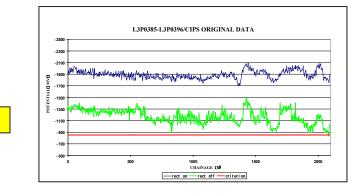
Combined CIPS & DCVG Surveys

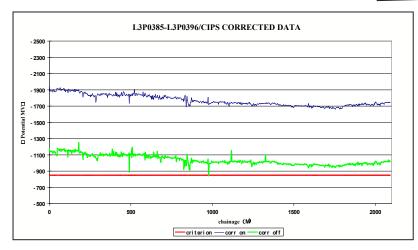
Stray Current

- When performing a CIPS, set out a stationary data logger in the survey area
- The data will show any telluric or dynamic stray current on the line


Stray Current Correction

- GPS time stamp is used to compare the logger data with the mobile CIPS data
- Correcting for the stray current provides a more accurate reading of the CP on the pipeline
 - CIPSCorrected = CIPSTime X + (LoggerTime X Average (LoggerTime Interval))




Data From Test Station

CIPS Data Along Pipeline

Corrected CIPS Data

Data Examples

Combining Multiple Sources

- All of the data sources above can be looked at together
- By knowing the pipeline information and results from multiple tests, a complete picture of the line condition can be seen

Example

 CIPS meets criterion, DCVG shows defect, no construction in the area in years, PIG shows consistent wall thickness

Monitor

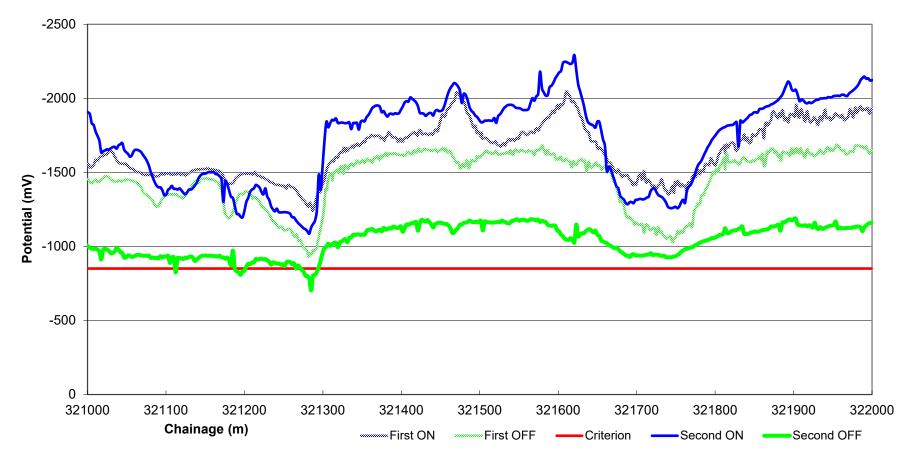
low probability of corrosion

Example

- CIPS goes below criterion, DCVG shows defect, new maps show a new subdivision in that area
- High priority for repair
 - Coating damage
 - High consequence area
 - Inadequate levels of CP

Example

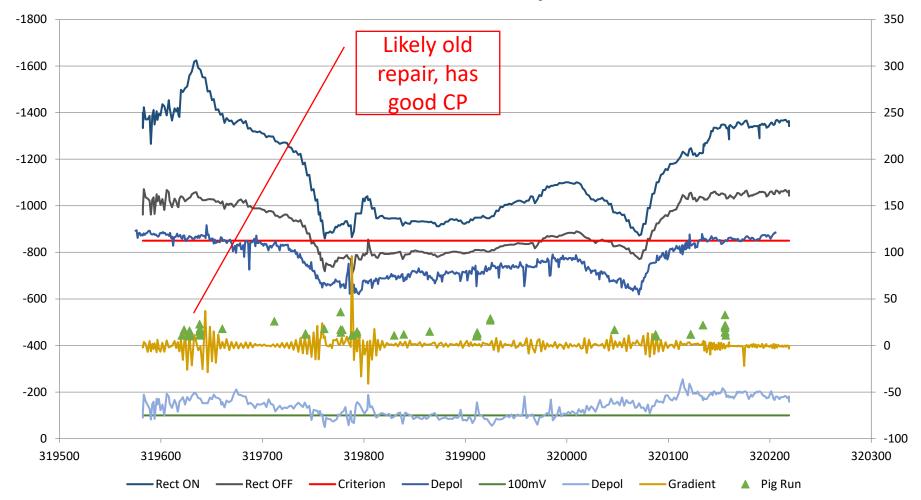
- CIPS goes below criterion, DCVG shows no defect, foreign line in the area
- More investigation
 - Possible stray current interference
 - Foreign pipeline
 - DC transit, welding, mining, etc.
 - Soil resistivity


Comparing Years

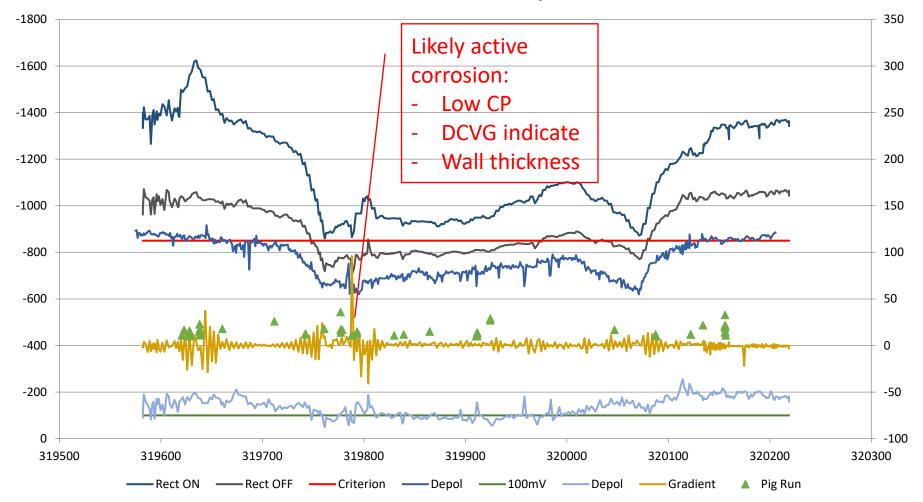
- Another test data source is from prior years and surveys
- When you have access to multiple years of data for your pipeline, it can be useful to compare the results
- Trends can appear
- Also acts as a check for your survey methodology

Comparing Years

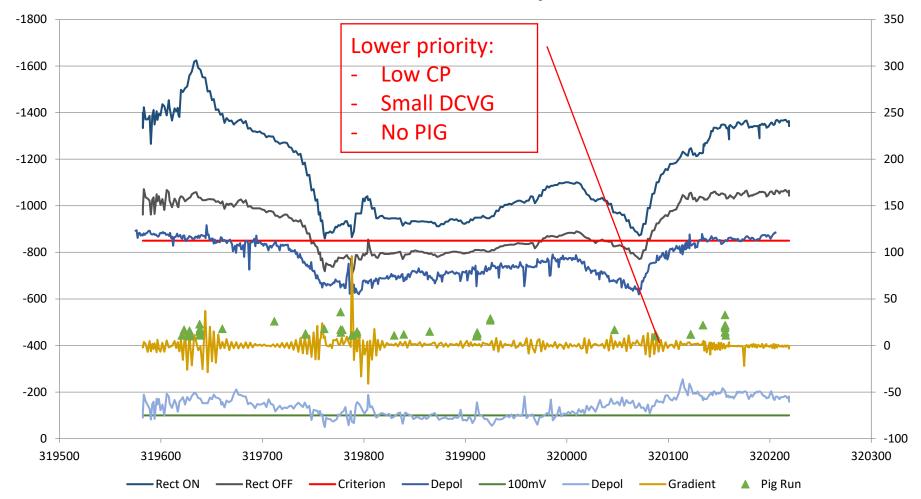
Comparison of CIPS Surveys Taken 5 Years Apart


Comparing Years

- 2 surveys 5 years apart
- ON potential (BLUE) very similar
 - Good indication of accuracy for both surveys
- OFF potential (GREEN) different
 - Same shape = survey in the same area
 - Previous survey had higher values
 - Possible causes:
 - Not all rectifiers interrupted during old survey
 - Rectifier output reduced between surveys


All Available Data

CIPS & DCVG & Depol


All Available Data

CIPS & DCVG & Depol

All Available Data

CIPS & DCVG & Depol

Conclusions

- More data = more information
 - Have the ability to access the raw data
 - Manipulate the data to combine multiple sources
- In this case, the first low CIPS indication is higher priority for repair than the second

Consistent Analysis

Lots of Data – Now What?

- Analysis of data by Corrosion Professional
- Reports to management
- Prepare for audit from inspectors (PHMSA, etc)
- Data available for future comparisons with surveys, digs, leaks, etc.

Analysis Tools

Done by One Person

- Subjective based on their education & experience
- Usually has lots of knowledge of pipeline history
- If that person leaves...

Analysis Tools

- Decision matrix
- Fuzzy logic
- Priority table
- Must take time / experience to develop
- Creates long term consistency

Setting priorities

Lower Priority

- Factors that can influence the growth of damage
 - Soil type
 - Soil resistivity / pH
 - Leak / repair history
 - Presence of bacteria

Higher Priority

- Anything that indicates damage to pipe wall = potential leak
 - Coating damage indication (DCVG, ACVG, etc)
 - ILI indication, especially if they show growth over time
 - CIPS below -850mV criterion
 - Stray current area

Priority System Example Results

DEFECT #	IR%	DCVG Class.	OFF (mV)	CIPS Class.	Dip (mV)	Dip Class.	ρ (Ω.cm)	Resistivity Class.	Р	Overall Class.
1	56.15	В	-688.00	Unprotected	341.20	Severe	199760.87	Not corrosive	0.421087	Severe
2	56.70	В	-797.00	Unprotected	230.40	Severe	7329.99	Moderately corrosive	0.496444	Severe
3	51.75	В	-817.00	Unprotected	80.00	Moderate	360412.26	Not corrosive	0.574235	Severe
4	38.40	В	-817.00	Unprotected	232.80	Severe	4626.72	Moderately corrosive	1.227086	Moderate
5	44.52	В	-742.00	Unprotected	342.80	Severe	71741.80	Not corrosive	1.260247	Moderate
6	35.79	В	-880.00	Protected	189.00	Severe	517684.56	Not corrosive	1.448639	Moderate
7	28.57	С	-815.00	Unprotected	214.80	Severe	369954.15	Not corrosive	1.488386	Moderate
8	27.96	С	-859.00	Protected	75.60	Moderate	112725.28	Not corrosive	1.488757	Moderate
9	36.43	В	-959.00	Protected	84.00	Moderate	353654.09	Not corrosive	1.503045	Moderate
10	27.80	С	-817.00	Unprotected	153.60	Severe	287568.83	Not corrosive	1.515706	Moderate
11	5.31	D	-943.00	Protected	28.80	Minor	470715.27	Not corrosive	2.000000	Minor

Model Development

- Model should be based on your pipeline & sound corrosion engineering
 - Available data
 - History of your pipe, surveys vs leaks
- Many companies have developed something
 - Ask colleagues, survey contractors
 - Look up NACE papers (2010-10054, C2012-1231, C2012-1479, C2015-5675)

Database Considerations

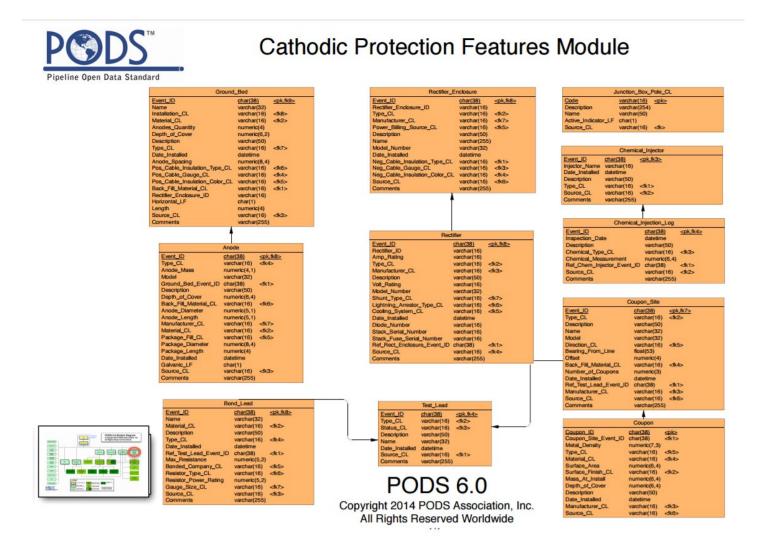
Data Integration

- There is lots of data available, now what?
 - Know where the information/reports are stored in the office or on the computer
 - Insist that any surveys done provide you with an electronic copy of the data
 - Purchase a database program to bring the different pieces of data together
 - Design your own database program

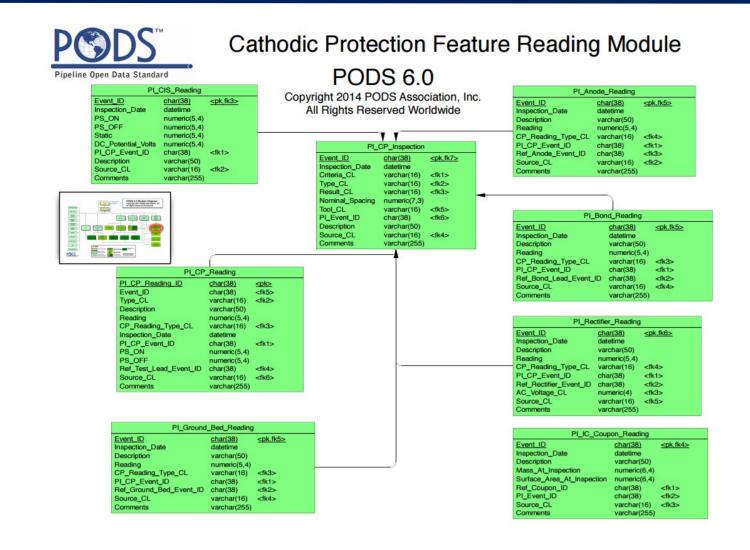
Data Base Programs

- There are several commercially available data base programs on in which you can store the information required for ECDA
- Be careful about proprietary data formats

- General DB:
 - Oracle
 - Microsoft Access
 - MySQL
- Pipeline Specific:
 - PCS
 - ProActive


PODS

- Pipeline Open Data Standard
- Not for profit association of:
 - Equipment manufacturers
 - Database programmers
 - Oil & Gas companies
- Sets data storage and format for oil & gas industry data



Pipeline Open Data Standard www.pods.org

PODS Module Example

PODS Module Example

Database Considerations

- Before purchasing software consider:
 - Number & ability of users
 - Other systems that need to connect, i.e. remote monitoring
 - In house technical ability
 - Type and amount of data to be tracked
 - Import/export ability, especially for your survey data
 - Budget

General Database

Pro's

- Customizable
- Access is included with Microsoft Office, no additional cost
- Accessed by many people, no per-seat cost
- Can be password protected

Con's

- Requires programming
- Knowledgeable person to design & maintain database
- Tricky to interface with other programs
- May not graph well

Pipeline Specific

Pro's

- Scalable with choice of different modules
- Manages many pieces of pipeline information
- Remote access
- Already set up for pipeline oriented data
- Can pay for customization if needed

Con's

- Cost to purchase
- Cost per seat
- Costs may be yearly, not just one time
- Confirm that current computers / network can handle
- Sometimes issues exporting data out

Physical Security

- How to protect the data integrity
 - Backup on a regular schedule
 - Protect computers from power surges
 - Daily emails from site
- Remote access from other offices / field techs
- Off-site backup
 - In case something ever happens to your office

Intellectual Security

- Who decides?
- Is there information that is confidential?
 - Can you have different levels of access?
- Can you view/print/share information when needed?
- Unauthorized data entry

Database Information

- What information do you need to store?
 - Alignment / GPS
 - Valves
 - Pumps
 - ECDA (surface surveys & digs)
 - Metal & coating
 - Internal corrosion
 - Product history (flow, pressure)
- Needs vs Wants

Suggested Questions

- Cost? Initial, per year, per seat
- Ability to import & export data (format)
- Database stored on site or remote
- Remote access from other offices / field
- Will it handle all info needed
- Interface with other programs (accounting, work orders, etc)
- Computer & network capacity
- Customizable
- Training

In Conclusion

- Know your pipeline and what data is available to you
- Know what works for you and your company
- Keep the data together as much as possible
- Compare different data sets to look for commonalities and changes

Thank You For Your Time and Attention

By: Elizabeth Nicholson, B.Eng, CP3 Cathodic Technology Ltd www.cath-tech.com

