CONDUCTING CLOSE INTERVAL POTENTIAL SURVEYS

Presented by: Doug Thomas

Appalachian Underground Corrosion Short Course

May 2019

CONDUCTING CLOSE INTERVAL POTENTIAL SURVEYS

- DEFINITION OF CLOSE INTERVAL SURVEYS (CIS)
- REASONS FOR CONDUCTING CIS
- TYPES OF CIS
- PRE-SURVEY CONSIDERATIONS
- DATA COLLECTION CONSIDERATIONS
- POST SURVEY PROCESSING AND ANALYSIS
- CONCLUSIONS

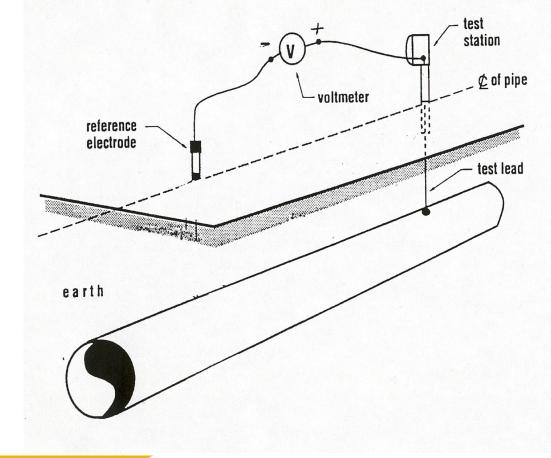
DEFINITION OF CLOSE INTERVAL SURVEY

• NACE DEFINITION – SP0207-2007

• A potential survey performed on a buried or submerged metallic pipeline, in order to obtain valid DC structure-to-electrolyte potential measurements at a regular interval sufficiently small to permit a detailed assessment.

PHMSA MANDATES

- §192.455 Subpart I External corrosion control: Buried or submerged pipelines installed after July 31, 1971.
- §192.465 External corrosion control: Monitoring.
- § 195.573 Subpart H Hazardous Liquid Pipeline: Exterior Corrosion Control



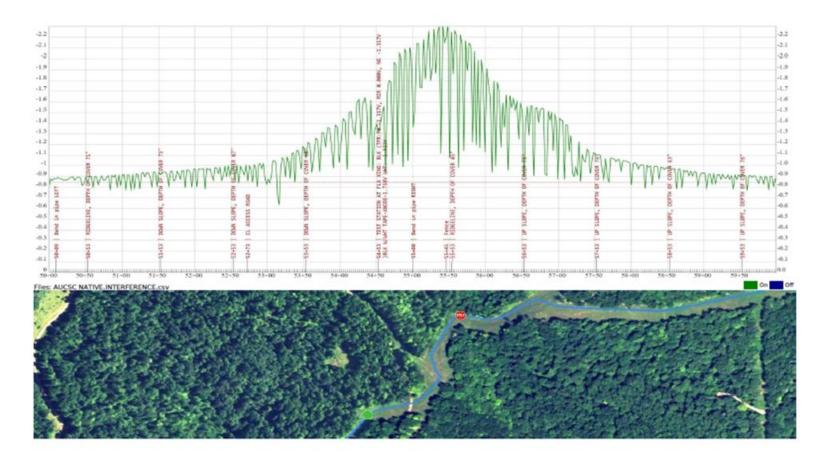
REASONS FOR CONDUCTING CLOSE INTERVAL SURVEYS

- Compliance with PHMSA Requirements
- Testing for adequate levels of CP over the entire length of the structure
- Evaluation and Identification of coating anomalies/damage
- Determine Presence of Interfering currents from DC sources
- Evaluation of electrical isolation from casings/other foreign structures

Schematic Of A Close Interval Survey

TYPES OF CLOSE INTERVAL SURVEYS

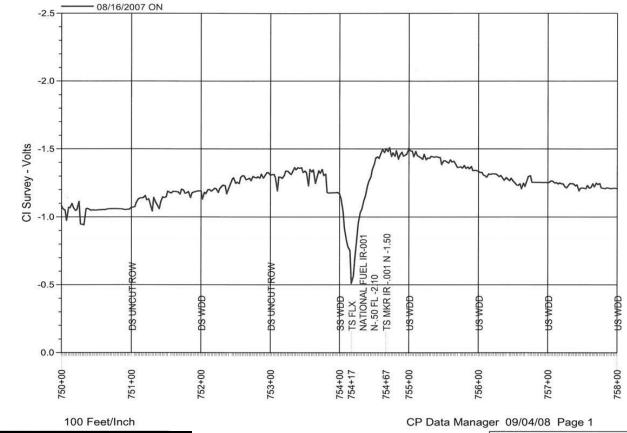
- NATIVE SURVEY
- CURRENT APPLIED OR "ON ONLY" CORROSION SURVEY
- ON/INTERRUPTED SURVEY
- DEPOLARIZED SURVEY



NATIVE SURVEY

- A Native pipe-to-soil survey is used to establish a base-line profile of the pipeline system, before designed CP is ever applied
- Can help to determine if foreign or interference currents are present before CP is applied.
- Often used in conjunction with On/Interrupted surveys to establish 100mv polarization shift criteria.
- Can create future cost savings and minimize risks associated with de-energizing facilities to obtain depolarized potentials.

NATIVE SURVEY W/FOREIGN CURRENT



CURRENT APPLIED OR "ON" SURVEY

- The On/only survey is normally conducted on structures that have magnesium anodes directly attached to the structure, where it's not practical to obtain IR Free potentials.
- An on survey does not take into account "IR drop (Voltage Error)".
- Sometimes used in conjunction with IR drop Free Coupons to confirm levels of cathodic protection.
- These surveys are performed to help verify cathodic protection levels and coating efficiency.

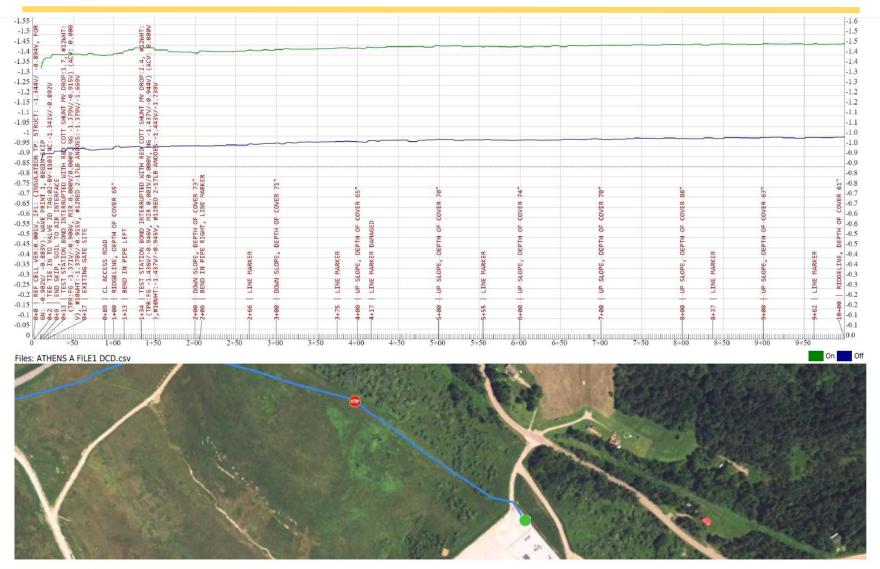
Current Applied "On" Survey

PIPELINE THREE

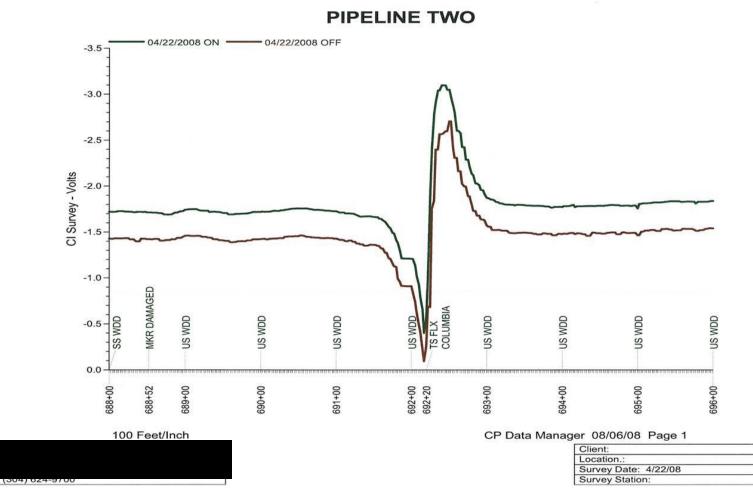
Client:	
Location .:	
Survey Date: 08/16/07	JSF/EMS
Survey Station:	

ON/INTERRUPTED SURVEY

- This is the most common type of CIS used on impressed current systems and galvanic systems where current sources can be interrupted.
- Generally the interval for each potential measurement collected is approximately 2.5 to 5 feet.
- Requires "**all**" influencing current sources to be interrupted using synchronized current interrupters.
- Instant-off potentials provides an IR free reading of polarized pipe potentials.

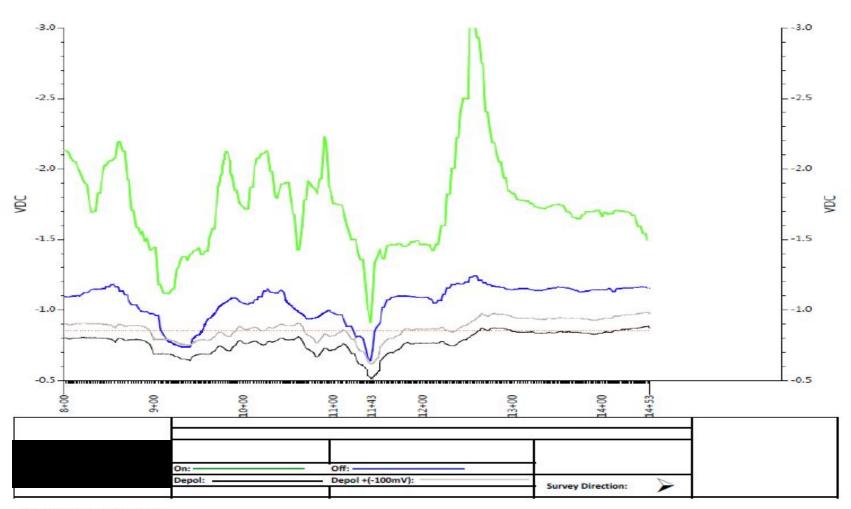


Instant Off Potentials Factors


- Ensure "On" vs. "Off" cycle time (3/1) allows accuracy in the instant off potential measurement.
- Evaluate the "delay time" where the data logger captures the current on and instant off potential measurement. (wave prints)
- Evaluate all AC mitigation devices that may effect the capture of the instant off potential measurement. (Capacitance effect)
- Usage of an oscilloscope to help evaluate unknown DC sources that may effect the instant off potential measurement.

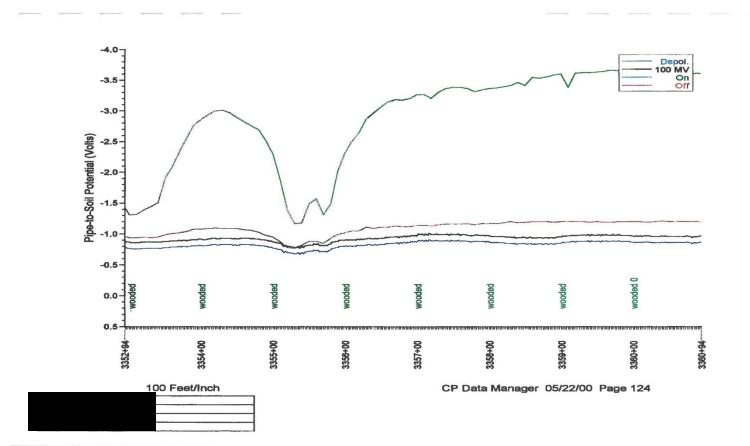
On-Interrupted Galvanic Survey

On/Interrupted Survey



DEPOLARIZED SURVEY

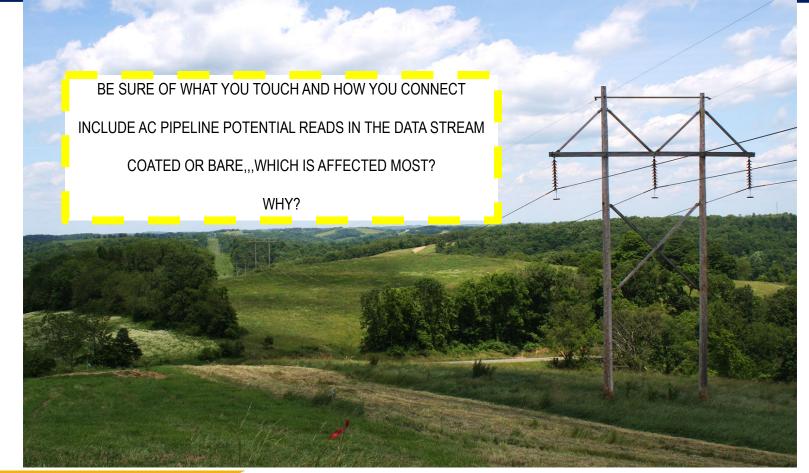
- A depolarized survey is used in conjunction with an On/Interrupted survey to verify 100mV polarization.
- The pipeline must have all influencing sources of current turned off and be allowed to depolarize sufficiently before conducting the survey.
- It is necessary to survey as accurately as possible to the original On/Interrupted survey to be able to overlay potentials.
- The Depolarized data is then graphed against the On/interrupted data to determine if the 100mV polarization criteria has been achieved.
 - Graph includes calculated line Depolarized Potential + 100mv


Depolarized Survey

Vertical Scale: 0.0vDC - (-3.0) Horizontal Scale: 1 Inch = 100Ft

www.RobertsCorrosionServices.com

Depolarized Survey Graph


Pre-Survey Consideration

• Know the CIS Specifications and Requirements

- Set a Pre-Job meeting with the Corrosion vendor or request one with the Operator
 - PPE and Safety Requirements (NACE SPO 0177)
 - Required OQ covered tasks for CIS crew
 - Scope of work (Where and What type of CIS will be preformed)
 - Review list of DC current sources to be interrupted
 - What Interruption cycle will be used
 - Special Features during data collection (Unusual line crossings, offset or flush test stations, AC mitigation devices)
 - Review any land owner or ROW access issues
 - Required Daily Reports and Daily Communication
 - Problems that may encountered during data collection process (uncut ROW, frozen ground, weather delays, Telluric, Static or dynamic DC sources)

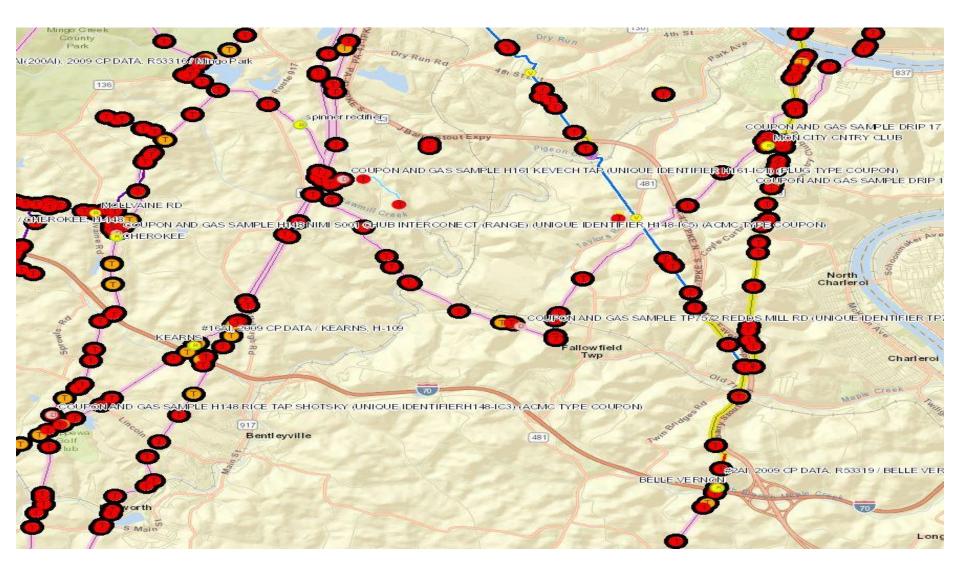
Paralleling AC Corridors? Safety is Paramount

ROW Mowed or Not?

Pre Survey Consideration

Specifications Cont'd

- Historical Data
 - Type of CP applied
 - Annual Test Point Inspections
 - Evaluation of historical rectifier outputs
 - Electrical bonds with Foreign structures or across isolation devices
 - Previous CIS data
- Mapping and Alignment Sheets:
 - Test Points / Rectifier locations
 - Test Station wiring configurations
 - Tie-in points and location of electrical Isolation devices
 - Pipeline mapping or goggle earth files


Pre-Survey Test Point Information

Facility	AssetNumber	InspectionDate	StructurePS	StructureIRF	CasingPS	ForeignPS	ForeignIRF	Technician	Latitude	Longitude
Pipeline-1	P1-TP10	9/18/2014	-2.672					DLR	39.94716	-80.13893127
Pipeline-1	P1-TP10	7/22/2015	-2.466		-0.539			BRS	39.94716	-80.13893127
Pipeline-1	P1-TP10	7/18/2016	-2.423		-0.559			RJS	39.94716	-80.13893127
Pipeline-1	P1-TP11	9/18/2014	-2.235			-1.314	-1.273		39.95998	-80.13088989
Pipeline-1	P1-TP11	7/23/2015	-2.228			-1.472		BRS	39.95998	-80.13088989
Pipeline-1	P1-TP11	7/21/2016	-2.13	3		-1.41		RJS	39.95998	-80.13088989
Pipeline-1	P1-TP12	9/18/2014	-2.402	-1.581		-1.363		DLR	39.96117	-80.13009644
Pipeline-1	P1-TP12	7/22/2015	-2.162	-1.119		-1.337		BRS	39.96117	-80.13009644
Pipeline-1	P1-TP12	7/21/2016	-2.073	8		-1.921		RJS	39.96117	-80.13009644
Pipeline-1	P1-TP13	9/18/2014	-2.364	-1.535		-1.38	-1.378	BDLR	39.96346	-80.12945557
Pipeline-1	P1-TP13	7/23/2015	-2.129	-1.038		-1.389		BRS	39.96346	-80.12945557
Pipeline-1	P1-TP13	7/21/2016	-2.024	Ļ		-1.349)	RJS	39.96346	-80.12945557
Pipeline-1	P1-TP14	9/18/2014	-2.115	-1.407		-2.175	;	DLR	39.96681	-80.12885284
Pipeline-1	P1-TP14	7/23/2015	-2.032	-1026		-1.3		BRS	39.96681	-80.12885284
Pipeline-1	P1-TP14	7/18/2016	-1.933	3		-1.323		RJS	39.96681	-80.12885284

Pre-Survey Influencing Rectifier Information

Facility	AssetNumber	FacilityID	Latitude	Longitude	Inspection Date	Tap Settings	Rectifier Output Volts Found	RectifierOutput Current Found	Tech
Pipeline - 1		A1	39.96685791	-80.1112442	5/1/2017	B-4	27.69	10.2	RJS
Pipeline - 1	Pipeline1-RT02	WARD	40.0201683	-79.9968338	5/1/2017	D-3	36.18	14.53	RJS
Pipeline - 1	Pipeline1-RT03	THOMPSON	40.03536606	-80.05788422	5/1/2017	C-1	39.66	7.69	RJS
Pipeline - 1	Pipeline1-RT04	HUD M-82	39.90620422	-80.14971161	5/1/2017	C-4	38.33	10.08	RJS
Pipeline - 1	Pipeline1-RT05	M78 - RT 221 RUFF CK	39.94706345	-80.13899994	5/1/2017	B-3	17.68	3.06	RJS
Pipeline - 1	Pipeline1-RT06	PRATT STATION #47	39.912323	-80.12850952	5/1/2017	C-2	27.08	9.47	RJS
Pipeline - 1	Pipeline1-RT07	EDGAR #1 PRATT	39.95070267	-80.12539673	5/1/2017	A-2	4.86	0.61	RJS
Pipeline - 1	Pipeline1-RT08	HAWKINS #1 - H-106	39.94681931	-80.11604309	5/1/2017	A-3	14.55	4.04	RJS
Pipeline - 1	Pipeline1-RT09	CASTILE RUN #1	39.9718895	-80.10402679	5/1/2017	A-3	14.36	3.53	RJS
Pipeline - 1	Pipeline1-RT10	PYLES	39.96728516	-80.10668182	5/1/2017	A-6	17.98	3.65	RJS
Pipeline - 1	Pipeline1-RT11	VRBANIC	39.9522934	-80.07000732	5/1/2017	A-6	23.68	13.63	RJS
Pipeline - 2	Pipeline2-RT01	JEFFERSON H-111	39.92829895	-80.06137085	5/1/2017	A-3	4.86	0.57	RJS
Pipeline - 2	Pipeline2-RT02	REESE - H109	40.03881454	-80.15016937	5/1/2017	B-2	15.2	5.58	RJS
Pipeline - 2	Pipeline2-RT03	JEFFERSON COMP STA	39.90927505	-80.07463074	5/1/2017	B-4	26.08	11.49	RJS
Station - 1	Station1-RT01	IO COMP STATION	39.95553207	-80.13075256	5/1/2017	A-4	5.09	5.18	RJS
Station - 2	Station2-RT02	JUPITER CS 2	39.96892929	-80.11095428	5/1/2017	B-4	15.06	12.29	RJS
Foreign Operator - 1		MOWL RD	40.11929	-80.18359	4/10/2017	A-2	13.14	10.4	

Pre-Survey Corrosion Asset Mapping

PRE-SURVEY CONSIDERATION

- Specifications Cont'd
 - Instrumentation and Equipment
 - Volt Meter / Data Loggers
 - High Input Resistance 10 Mega-ohm or greater
 - High Input Impedance 100 Mega-ohm and able to filter 25vac of induced AC
 - Meter's calibrated annually documentation
 - Reference Electrode
 - Type Saturated Copper/Copper Sulfate
 - Reference Cell Balance/Calibration Intervals (Typically within 5mV)
 - Pipeline Location
 - Measurement Techniques GPS / Slope Chain
 - Depth of Cover

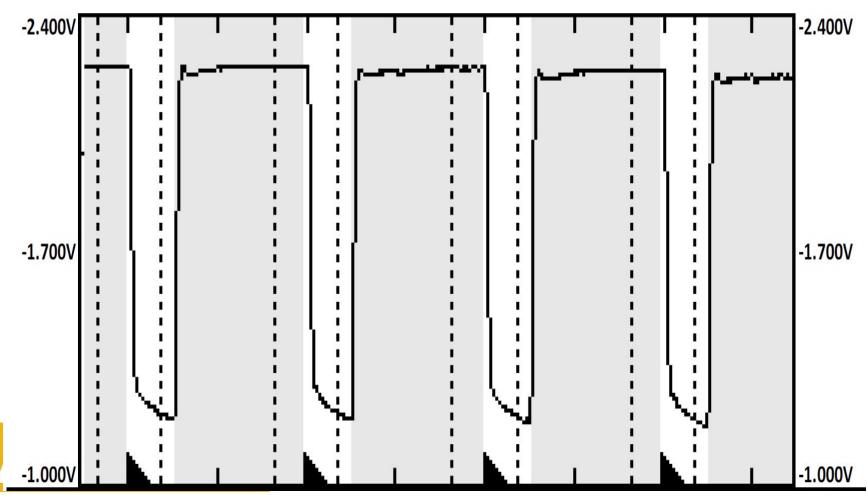
Close Interval Survey Equipment

SURVEY CONSIDERATON

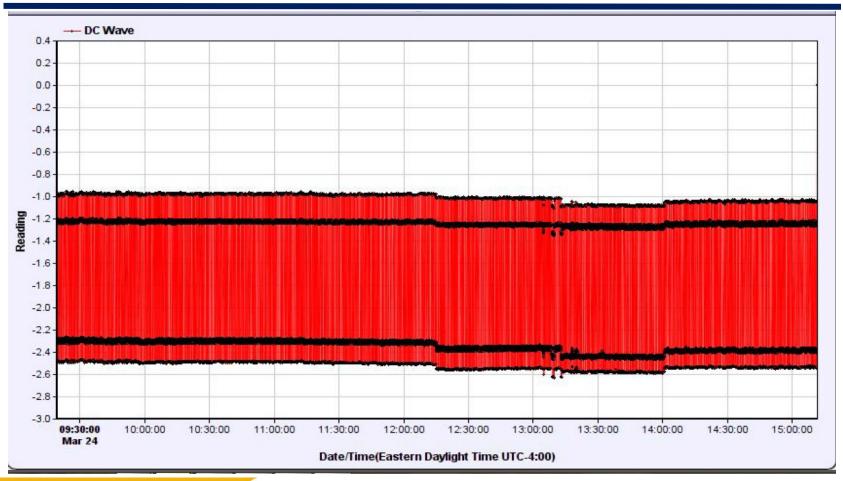
- Survey Specifications
 - Interruption
 - Cycle Time On: Off (3/1) ratio
 - Interruption Starting Position "On" or "Off"
 - How will the rectifier be interrupted? (DC or AC side)
 - GPS Synchronized
 - Usage of portable interrupters or remote monitoring interruption?
 - AC Mitigation Devices (SSD/PCR) interruption capacitance effect
 - Method to interruption bonds or electrical isolation devices

SURVEY CONSIDERATON

- Survey Specifications
 - Pipe-to-Electrolyte Potentials
 - Potential Measurements Interval and Range
 - Survey Lead Connections (-)Ref. Electrode (+)Structure
 - Field Data Collection
 - Electrolyte Contacts Concrete/Asphalt/Casings/Bores
 - Far Ground / Structure IR Drop / Near Ground Potentials
 - Foreign / Casing / Points of Isolation / AC Potentials
 - Reconnect Frequency (Typically over 1000ft)
 - Communication on areas below -.850vdc instant off criteria OR instant off potential above -1.20vdc



SURVEY CONSIDERATON


- Survey Specifications cont'd:
 - Measuring and Stationing
 - GPS / Slope Chain / Wire Counters
 - Permanent Landmarks / Appurtenance / Other Features
 - Wave Prints
 - Predetermined specified intervals / Survey Irregularities
 - Used to help filter "spiking" and identify Interrupter Sync Issues.
 - Help determine delay time needed on data loggers for accurate data collection
 - Stationary Data Loggers that continuous monitor potential measurements during field data collection

GPS SYNC'D CIS WAVEPRINT

Stationary Logger Graph

AUCSC(

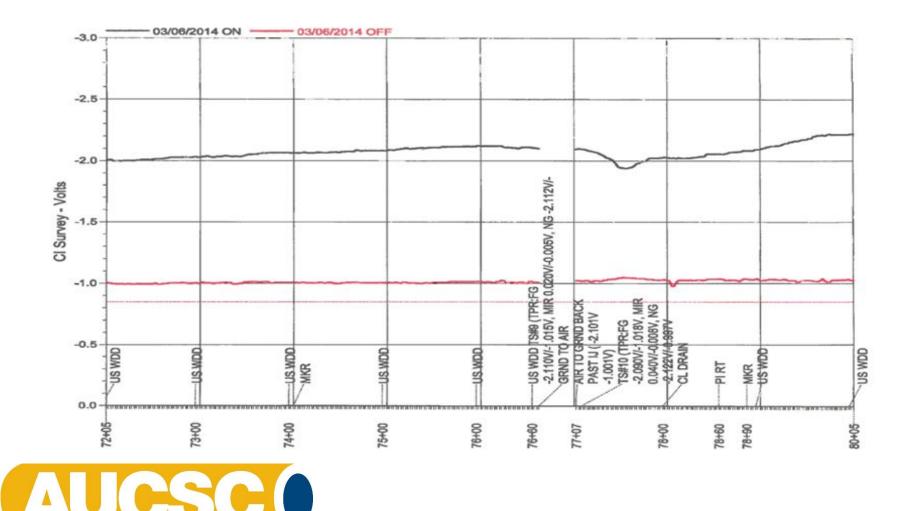
Post Survey Considerations

• Final Reports:

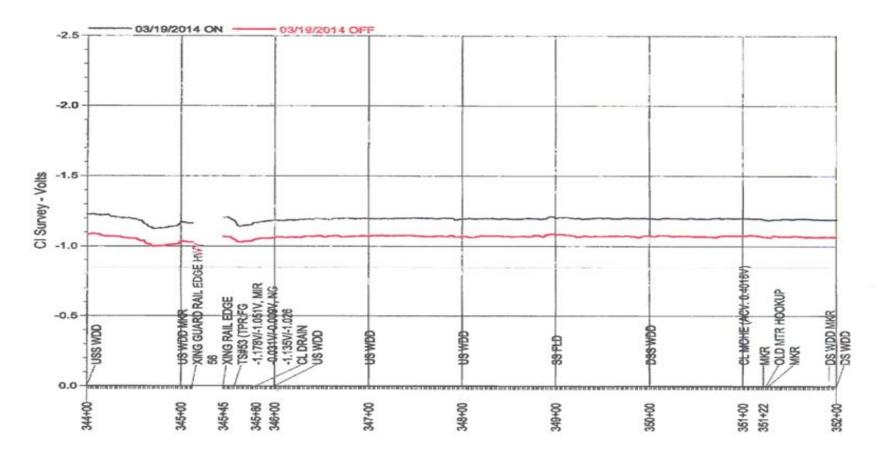
- Operator Qualification documentation
- Depth of Cover and areas of exposure
- Listing of all Rectifiers, Bonds, and Anodes interrupted during Survey
 - Rectifier Output and Tap settings "As Found" and "As Left
- List of all permanent Test Stations with all data Information required
 - AC potentials, Far Ground, Structure IR, Near Ground
 - Foreign, Casing, Isolation Point Potentials
 - Damaged (No Contact to pipe)
- Summary of areas not meeting the CP criteria being evaluated
 - Potentials < -.850V "On" current applied surveys
 - Potentials < -.850V IR Free "Instant Off" Interrupted
 - Areas not meeting 100mv Polarization with respect to Native or Depolarized Surveys.
 - Negative Potentials above the specification (More negative than -1.20vdc instant off potential)

Post Survey Considerations

- Final Report Cont'd:
 - Data Graphs
 - Each type of potential easily distinguished.
 - Usually Color coded
 - Legend may Include:
 - Client / Operator Name, Survey Date
 - Structure or Asset name
 - Interruption Cycle times
 - Surveyor Name
 - Survey measurement: GPS'd Stationing
 - Test Stations and Above Ground Appurtenances
 - Areas of Skip Potentials Public Roads, Casings, Bores, Exposures
 - Points of Intersections / Geographical Features

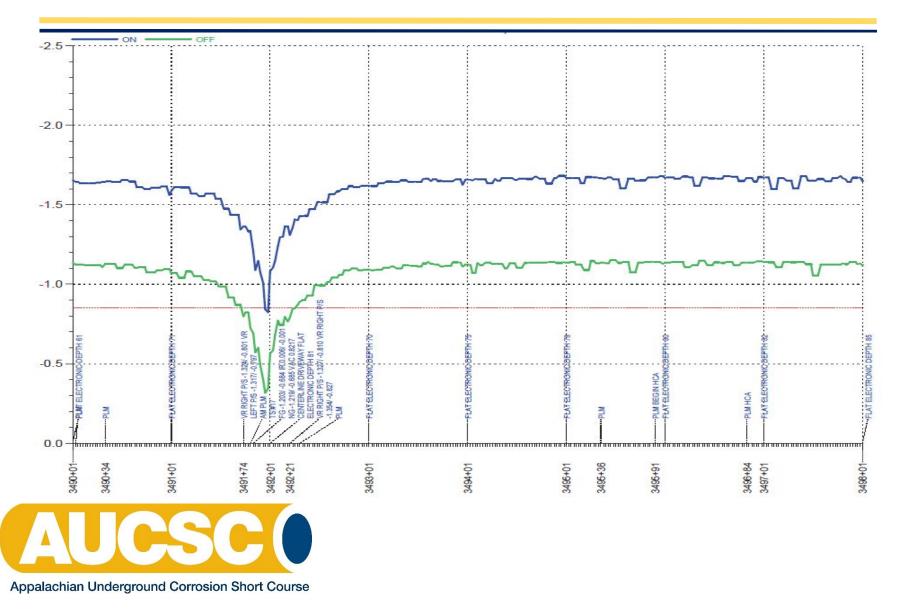

Post Survey Considerations

• Final Report Cont'd

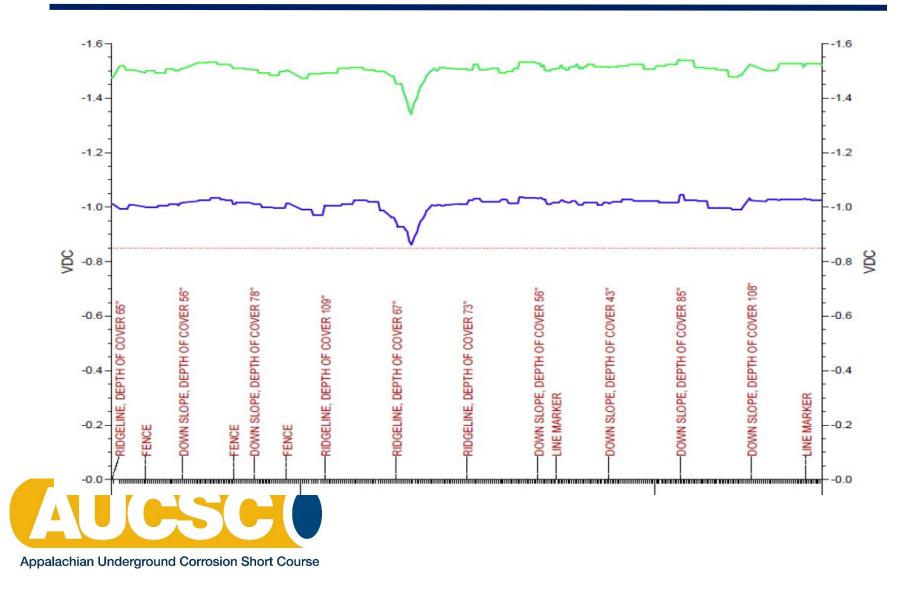

- Wave Prints
- Continuous Logging
- Deliverables:
 - Bounded Reports
 - Electronic Reports
 - File Formatting: (.pdf, .xls, .svy)
- Remedial Recommendations
 - Cathodic Protection Adjustments
 - Criterion change considerations
 - Additional Survey requirements ACVG / DCVG
 - Confirmation / Repair Digs

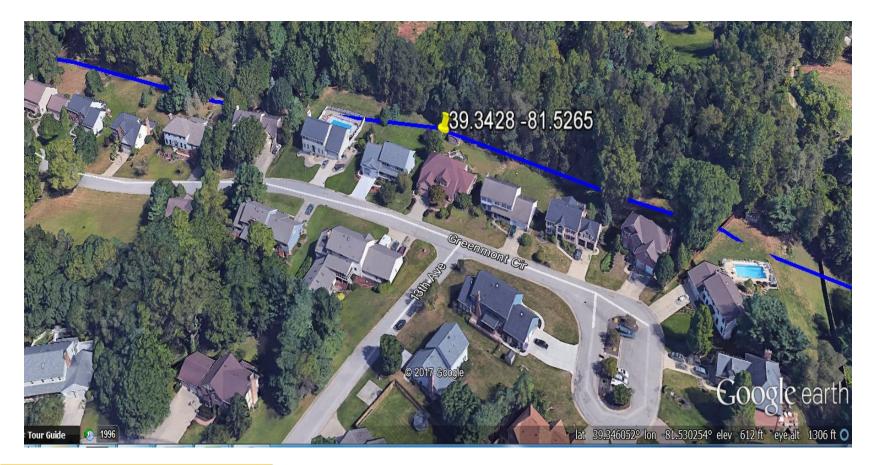
Desired Results "Impressed Current" CIS Graph

Desired Result "Galvanic Protection" CIS Graph



CIS Data Evaluation


Let's look at a unique CIS low potential area and what steps were taken to evaluated and remediate.


Positive Shift in Potentials/Concern?

Positive Shift in Potentials/Concern?

Location/Location/Location

Field Evaluation Low Potential Areas

- Field verification of data confirmed low potential areas
- Coating quality tests did not reveal any significant coating damage (ACVG)
- Evaluation of stationary data loggers showed no problems with rectifier interruption
- Evaluation of previous CIS data did not show low potential areas
- Plan to excavate pipeline to evaluate

Field Evaluation Low Potential Area

- During excavation found broken telephone cable directly over low potential areas
- The DC potential measurements on the telephone cable was -26.0vdc and 9.0vac
- Potential at pipe interface -1.50vdc/-1.10vdc cse
- Contact telephone company to confirm abandoned cable was still energized.
- Installed epoxy splice kit to isolate cable from ground
- Resurvey low potential areas to confirm remediation/compliance and properly documented findings

Broken Telephone cable

Broken Telephone cable

SUMMARY

- A CIS PROVIDES A CONTINUOUS PIPE-TO-SOIL POTENTIAL PROFILE OF THE PIPELINE
- DETERMINES EFFECTIVENESS OF THE CATHODIC PROTECTION BEING APPLIED TO SYSTEM.
- A POWERFUL ANALYSIS TOOL THAT CAN BE INTEGRATED WITH INLINE INSPECTION DATA
- DATA MUST BE TECHNICALLY ACCURATE TO ENSURE PIPELINE SAFETY AND COMPLIANCE
- REMEMBER: GARBAGE "IN" = GARBAGE "OUT"

Like a Walk in the Park

