DC and AC Coupon Technology

Michael Placzek

ARK Engineering & Technical Services, Inc

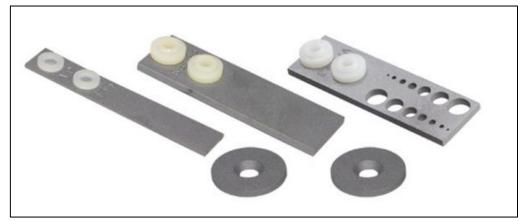
Appalachian Underground Corrosion Short Course

DC & AC Coupon Technology

- What are they?
- What do they look like?
- How do you install them?
- What is the Data From A Coupon Good For?
- How Do You Read Them?

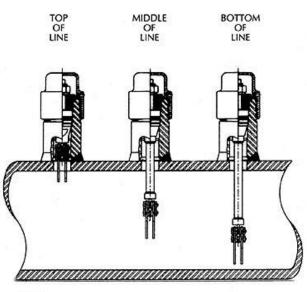
DC & AC Coupon Technology

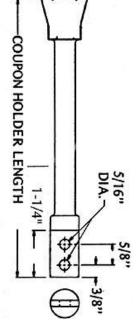
• This is a coupon:



Coupon History

 Traditionally Coupons Were for Internal Corrosion and Atmospheric Corrosion Monitoring and Testing





Coupon History

- Internal Corrosion Coupons Were Placed Inside the Pipeline To Monitor the Corrosive Effects of What the Pipeline Carried.
- Liquids or Gas

Coupon History

 Atmospheric Coupons Either Tested Multiple Metals or Multiple Coatings to a Corrosive

Coupon Definition

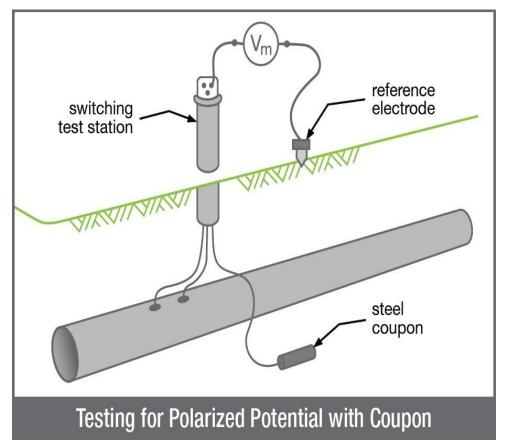
- A coupon is a representative piece of material or metal subjected to an environment for testing purposes.
- SP0104-2014: "Cathodic Protection Coupon a coupon that is connected to the external surface of, and immersed in the electrolyte adjacent to, the structure being protected by cathodic protection."

Pipeline Coupon Examples

- Basic
 - Simple Single Coupon
 - Two Wire

Pipeline Coupon Examples

- More Advanced
 - Multiple Coupons
 - 1 cm² for AC
 - 2- 100 cm² for DC
 - Reference Electrodes
 - Test Station Switching



Coupon 101 – Install

- Coupon is placed in the ground next to the pipe – IN THE SAME ELECTROLYTE
- Cpn is connected to pipeline in test station
- Ref Cell is used to read pipe or cpn potentials

Coupon 101 – How to Read

- Regular Ref Cell Placement
- Coupon Still Hooked Up to Pipe Read Both
- Break Coupon Lead Wire Read Just Coupon
- Sounds Simple Right?
- Well It Is Sort Of

Coupon 201

- Buried Reference Electrodes Fail!
- Coupons can upset CP-Pipeline circuit.
 - Well coated pipeline coupon is large holiday
 - Too many coupons on a well coated pipeline
 - Coupon can become part of interference circuit
- Wires Break
- Forget to Flip the Switch (On or Off)
- Lightning Damage to Coupon or Circuit Card

Data from a Coupon - DC

- Native Potentials This Coupon is never hooked to pipeline
- ON Potentials Read with the Pipeline
- I-Off Potentials Disconnect Coupon and read the Coupon Instant Off
 - Do not Have to Interrupt Multiple Rectifiers
 - Direct Connect Sacrificial Anodes
 - Interference Studies
 - Multiple Pipelines in single ROW

Data from Coupon – DC & AC

- Measure Current Coming From Coupon
- Calculate Current Density
- Common Unit of Measure is A/m²
 - Amperes Per Square Meter
 - Watch Your Units!!!!!!
 - Real current measurements can be mA or μA
 - Clamp-On Ammeters Cannot Read This.
 - Coupons are measured in cm².
 - For a 1 cm 2 AC coupon: $100A/m^2 = 10mA/cm^2$
 - For a 100 cm 2 DC coupon: 100 A/m 2 = 1A/cm 2

Why Is Current Density Important?

- "Cathodic Protection" by PE Francis
 - Expected DC Current Densities for CP in:

Acidic Solutions: 350 - 500 A/m²

• Saline Solutions: 0.3 – 10 A/m²

• Sea Water: 0.05 – 0.15 A/m²

• Saline Mud: 0.025 – 0.05 A/m²

- "AC Corrosion-A New Challenge To Pipeline Integrity" by Gummow/Wakelin/Segall
 - Expected AC Corrosion Damage for Given AC Current Densities on Adequately Cathodically Protected Pipelines
 - d < 20 A/m²: No AC Induced Corrosion Expected
 - 20 A/m² < d < 100 A/m²: Unpredictable
 - 100 A/m²: Expected

Why Current Density is Important?

- "AC Corrosion Case Histories, Test Procedures & Mitigation" by Gummow/Wakelin/Segall
- AC Corrosion Rates
 - Are highest at holidays having a surface area of 1 3 cm²
 - Increase in chloride containing or deaerated environments
 - Increase with decreasing AC frequency below 100 Hz
 - Decrease with increasing CP current density
 - Decrease with time

•
$$i_{ac} = \frac{8V_{ac}}{\rho\pi d}$$

- i_{ac} = AC current density
- V_{ac} = AC voltage of pipeline to remote earth
- ρ = soil resistivity
- d = diameter of a circular holiday having an area equal to that of the actual holiday

How do you read them?

- Directly Voltmeter for Potential Measurements
- Directly Ammeter for Coupon Current Measurements
 - Very Low Scale Such as Milliamps or even Microamps
 - Careful Breaking the circuit to hook up the ammeter in series causes depolarization
- Remote Monitoring Reads It For You
 - Remote Access
 - Constant Monitoring
 - Records History
- CAUTION: Every Meter Has Errors.
 - Since you are reading very small numbers, a small error can sway data.

Guidance

- Company SOPs
- NACE SP0169-Latest Edition for Magnitudes "Control of External Corrosion on Underground or Submerged Metallic Piping Systems"
- NACE SP0104-Latest Edition for How To –
 "The Use of Coupons for Cathodic Protection
 Monitoring Applications"
- Vendors and Suppliers Materials and Individual Equipment Instruction

