Understanding the Reference Electrode

Measuring Potentials

- When measuring potential, you are actually measuring the <u>difference</u> in potential between two electrodes.
- If the measured potential changes, it means that the potential of <u>one</u> of the two electrodes has changed.
- Which one changed?

Simple Electrodes

- transfer electricity from a solid conductor to a liquid electrolyte
- make the transfer by means of a chemical reaction at the electrode surface
- establish an electrical potential unique to the electrode surface reaction
- In a reference electrode, the electrolyte, metal and reaction are precisely defined to produce a consistent potential

Two Types of Electrodes

<u>2nd type – Liquid Junction</u>

$$M^0 + A^- \leftarrow \rightarrow MA + e^-$$

 $E = E_0 + 2.3 \frac{RT}{nF} \log(A^-)$

Electrolyte Forms

- <u>Dry electrode (SJ)</u> Element in direct contact with the structure electrolyte
- Wet electrode (LJ) Element immersed in a salt solution and separated from the environment by a porous plug
- <u>Gelled electrode (LJ)</u> Element immersed in a gelled salt solution and separated from the environment by a conducting membrane

Commonly Used Reference Electrodes

- Copper/Copper Sulfate (Cu/CuSO₄) LJ
 - Underground
 - Fresh water
- Silver/Silver chloride (Ag/AgCl) LJ
 - Seawater
 - Saline mud
 - Concrete

Relative Potentials of Electrodes

Relative Potentials of Cathodically Protected Steel

External Influences

- Reference potential (LJ) is influenced by:
 - a) Electrolyte Concentration
 - b) Temperature
 - c) Electrolyte Contamination
 - d) Light (UV)

Electrolyte Concentration Affects Potential

- As the electrolyte salt concentration drops (less than sat.):
- Cu/CuSO₄ reference drifts in the negative direction
- Ag/AgCl reference drifts in the positive direction.

Temperature Affects Potential

Appalachian Underground Corrosion Short Course

As the temperature increases:

- Cu/CuSO4 references drift in the positive direction
- Ag/AgCl references drift in the negative direction.

Contamination Affects Potential

Appalachian Underground Corrosion Short Course

Cu/CuSO₄ references should not be used in chloride contaminated environments.

Light (UV) Affects Potential

Copper/Copper Sulfate (Cu/CuSO₄) Reference Electrodes are Sensitive to Light (UV)

	Light Source Intensity	Change	and the second second
Ton	High Noon – Direct Sunlight	-52mV	how have
TUP	Open Shade – Indirect Sunlight	-10mV	Marcan Ca
	Interior Fluorescent or CFL	-2mV	

Test Method

- AMPP (NACE) TM0113-2013
- Evaluating the Accuracy of Field-Grade Reference Electrodes

Permanently Installed Reference Electrodes

Service Life – Effect of Diffusion

Appalachian Underground Corrosion Short Course

Diffusion rate increases with:

- Temperature
- Membrane area
- Concentration difference

When the salt saturation or composition of electrolyte at the element changes, the reference potential will shift.

Service Life Factors

- Design
 - Electrolyte path length
 - Ion flow control
- Chemical
 - Gel binder composition
 - Salt loading
- Environmental
 - Electrolyte flow rate
 - Electrolyte contamination

Failure Mechanisms

- Change of electrolyte ion concentration
- Electrolyte contamination
 - Cu/CuSO₄: chlorides & sulfides
 - Ag/AgCl: sulfides & other halides
- Loss of electrical circuit continuity
 - Wire failure
 - Electrolyte dry-out

Measurement Circuit

Measurement Errors Internal IR Drop

- Internal IR drop results from current flowing through the measurement circuit
- Reduce by using a higher input impedance meter or potentiometric voltmeter
 - 10 megohm (min.) for water and damp soil
 - 100 megohm (min) for semi-dry soil and concrete
- Measurements through asphalt should be avoided because asphalt is an insulator

Measurement Errors Remote Monitoring Units

Excessive current flowing through a reference electrode will shift the potential or destroy the cell.

Input impedance must not drop below $10M\Omega$ as unit is cycled through off, on-standby and on-measuring.

Measurement Errors External IR Drop

- External IR drop results from current flowing through the electrolyte, either from the CP system or stray currents from other sources
- Small reductions obtained by placing the reference close to the structure
- Larger reductions obtained by interrupting CP current or using CP coupons

Questions?

Commonly Used Reference Electrodes

- Copper/Copper Sulfate (Cu/CuSO₄)
 - Underground
 - Fresh water
- Silver/Silver chloride (Ag/AgCl)
 - Seawater
 - Saline mud
 - Concrete

